Принят и введен в действие

Постановлением Госстандарта РФ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УСТАНОВКИ ВОДЯНОГО И ПЕННОГО ПОЖАРОТУШЕНИЯ АВТОМАТИЧЕСКИЕ

ОРОСИТЕЛИ

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. МЕТОДЫ ИСПЫТАНИЙ

Automatic water and foam fire fighting systems.

Sprinklers, spray nozzles and water mist nozzles.

General technical requirements. Test methodsГОСТ Р 51043-2002

Дата введения

Предисловие

1. Разработан и внесен Техническим комитетом по стандартизации ТК 274 «Пожарная безопасность».

2. Принят и введен в действие Постановлением Госстандарта России от 25 июля 2002 г. № 287-ст.

3. Взамен ГОСТ Р 51043-97.

1. Область применения

Настоящий стандарт распространяется на водяные и пенные оросители, предназначенные для разбрызгивания или распыления воды и водных растворов и применяемые в автоматических установках пожаротушения для тушения и блокирования пожара.

Настоящий стандарт устанавливает общие технические требования оросителей и методы их испытаний.

Требования 5.1.1.3; 5.1.1.6; 5.1.1.8 - 5.1.1.10; 5.1.3.2; 5.1.3.5; 5.1.3.6; 5.1.4.1; 5.1.4.3 - 5.1.4.8; 5.2.3; 5.3.1 - 5.3.3; 6.1; 6.2 являются обязательными, остальные - рекомендуемыми.

ГОСТ 2.601-95 Единая система конструкторской документации. Эксплуатационные документы

ГОСТ 12.2.003-91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 27.410-87 Надежность в технике. Методы контроля показателей надежности и планы контрольных испытаний на надежность

ГОСТ 6211-81 Основные нормы взаимозаменяемости. Резьба трубная коническая

ГОСТ 6357-81 Основные нормы взаимозаменяемости. Резьба трубная цилиндрическая

ГОСТ 6424-73 Зев (отверстие), конец ключа и размер «под ключ»

ГОСТ 13682-80 Места под ключи гаечные. Размеры

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

Примечание.

ГОСТ 16093-81 Основные нормы взаимозаменяемости. Резьба метрическая. Допуски. Посадки с зазором

3. Определения и сокращения

3.1. В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1.1. Ороситель: устройство, предназначенное для тушения, локализации или блокирования пожара путем разбрызгивания или распыления воды и/или водных растворов.

3.1.2. Спринклерный ороситель: ороситель с запорным устройством выходного отверстия, вскрывающимся при срабатывании теплового замка.

3.1.3. Дренчерный ороситель: ороситель с открытым выходным отверстием.

3.1.4. Ороситель с управляемым приводом: ороситель с запорным устройством выходного отверстия, вскрывающимся при подаче внешнего управляющего воздействия (электрического, гидравлического, пневматического, пиротехнического или комбинированного).

3.1.5. Ороситель для подвесных потолков и стеновых панелей: ороситель общего назначения, вмонтированный в подвесных потолках или стеновых панелях.

3.1.6. Углубленный ороситель: ороситель для подвесных потолков и стеновых панелей, у которого корпус или дужки частично находятся в углублении потолка или стены.

3.1.7. Потайной ороситель: ороситель для подвесных потолков и стеновых панелей, у которого корпус, дужки и частично термочувствительный элемент находятся в углублении потолка или стены.

3.1.8. Скрытый ороситель: ороситель для подвесных потолков и стеновых панелей, устанавливаемый заподлицо с подвесным потолком или стеной, скрытый термочувствительной декоративной крышкой.

3.1.9. Ороситель общего назначения: розеточный ороситель традиционной конструкции, устанавливаемый под потолком или на стене и предназначенный для тушения или локализации пожара в зданиях и помещениях различного назначения.

3.1.10. Ороситель специального назначения: ороситель, предназначенный для выполнения специальной задачи по тушению, локализации или блокированию распространения пожара.

3.1.11. Ороситель для водяной завесы: ороситель, предназначенный для блокирования пожара путем создания водяных завес.

3.1.12. Ороситель для стеллажных складов: ороситель, предназначенный для тушения пожаров во внутристеллажном пространстве.

3.1.13. Ороситель для пневмо- и массопроводов: ороситель, предназначенный для предотвращения распространения пожара по пневмо- и массокоммуникациям.

3.1.14. Ороситель для предупреждения взрывов: ороситель, предназначенный для предотвращения возникновения взрыва.

3.1.15. Ороситель для жилых домов: ороситель, предназначенный для тушения пожаров в жилом секторе.

3.1.16. Разбрызгиватель: ороситель, предназначенный для разбрызгивания воды или водных растворов (средний диаметр капель в разбрызгиваемом потоке более 150 мкм).

3.1.17. Распылитель: ороситель, предназначенный для распыления воды или водных растворов (средний диаметр капель в распыленном потоке 150 мкм и менее)

3.1.18. Тепловой замок: устройство, состоящее из термочувствительного элемента, удерживающего запорный орган спринклерного оросителя, и срабатывающее при достижении температуры, равной температуре срабатывания термочувствительного элемента.

3.1.19. Термочувствительный элемент: устройство, разрушающееся или меняющее свою первоначальную форму при заданной температуре.

3.1.20. Ширина завесы: фронтальная протяженность защищаемой площади, в пределах которой обеспечивается заданное значение удельного расхода.

3.1.21. Глубина завесы: перпендикулярная к ширине завесы протяженность защищаемой площади, в пределах которой обеспечивается заданный удельный расход.

3.1.22. Водяная завеса: поток воды или ее растворов, препятствующий распространению через него пожара и/или способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур.

3.1.23. Защищаемая площадь: площадь, средняя интенсивность и равномерность орошения которой не менее нормативной или установочной в ТД.

3.1.24. Номинальная температура срабатывания: нормативная температура спринклерного оросителя, при которой должно обеспечиваться срабатывание его термочувствительного элемента.

3.1.25. Условное время срабатывания (условное статическое время срабатывания спринклерного оросителя): время с момента помещения спринклерного оросителя в термостат температурой, превышающей номинальную температуру срабатывания на 30 °С, до срабатывания теплового замка спринклерного оросителя.

3.1.26. Условное динамическое время срабатывания спринклерного оросителя: время с момента помещения спринклерного оросителя в канал с потоком прокачиваемого воздуха заданной температуры, превышающей номинальную температуру срабатывания, до срабатывания теплового замка спринклерного оросителя.

3.1.27. Номинальное время срабатывания: нормативное время срабатывания спринклерного оросителя и оросителя с внешним приводом, указанное в настоящем стандарте или в ТД на данный вид изделия.

3.1.28. Коэффициент производительности: относительная величина, характеризующая пропускную способность оросителя по подаче огнетушащих веществ (ОТВ).

3.1.29. Удельный расход водяной завесы: расход, приходящийся на один погонный метр ширины завесы в единицу времени.

3.1.30. Интенсивность орошения: расход, приходящийся на единицу площади в единицу времени.

3.2. В настоящем стандарте приняты следующие сокращения:

Р - давление, МПа;

S - защищаемая площадь, м2;

Н - высота установки оросителя от верхних кромок мерных банок до розетки оросителя, м;

L - ширина защищаемой зоны, м;

В - глубина защищаемой зоны, м; - условный диаметр выходного отверстия, мм.

4. Классификация и обозначение

4.1. Оросители подразделяют:

4.1.1. По наличию теплового замка или привода для срабатывания на:

Спринклерные (С);

Дренчерные (Д);

С управляемым приводом: электрическим (Э), гидравлическим (Г), пневматическим (П), пиротехническим (В);

Комбинированные (К).

4.1.2. По назначению на:

Общего назначения (О), в том числе предназначенные для подвесных потолков и стеновых панелей: углубленные (У), потайные (П), скрытые (К);

Предназначенные для завес (З);

Предназначенные для стеллажных складов (С);

Предназначенные для пневмо- и массопроводов (М);

Предназначенные для предупреждения взрывов (В);- предназначенные для жилых домов (Ж);

Специального назначения (S).

4.1.3. По конструктивному исполнению на:

Розеточные (Р);

Центробежные (эвольвентные) (Ц);

Диафрагменные (каскадные) (Д);

Винтовые (В);

Щелевые (Щ);

Струйные (С);

Лопаточные (Л);

Прочие конструкции (П).

Примечание. При акустическом распылении к букве, обозначающей конструктивное исполнение, добавляют нижний буквенный индекс «а».

4.1.4. По виду используемого огнетушащего вещества (ОТВ):

На водяные (В);

Для водных растворов (Р), в том числе пенные (П);

На универсальные (У).

4.1.5. По форме и направленности потока огнетушащего вещества на:

Симметричные: концентричные, эллипсоидные (0);

Неконцентричные односторонней направленности (1);

Неконцентричные двусторонней направленности (2);

Прочие (3).

4.1.6. По капельной структуре потока ОТВ на:

Разбрызгиватели;

Распылители.

4.1.7. По виду теплового замка:

С плавким термочувствительным элементом (П);

С разрывным термочувствительным элементом (Р);

С упругим термочувствительным элементом (У);

С комбинированным тепловым замком (К).

4.1.8. По монтажному расположению на устанавливаемые:

Вертикально, поток ОТВ из корпуса направлен вверх (В);

Вертикально, поток ОТВ из корпуса направлен вниз (Н);

Вертикально, поток ОТВ из корпуса направлен вверх или вниз (универсальные) (У);

Горизонтально, поток ОТВ направлен вдоль оси распылителя (Г);

Вертикально, поток ОТВ из корпуса направлен вверх, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) ();

Вертикально, поток ОТВ из корпуса направлен вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) ();

Вертикально, поток ОТВ из корпуса направлен вверх или вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) (универсальные) ();

В любом пространственном положении (П).

4.1.9. По виду покрытия корпуса:

Без покрытия (о);

С декоративным покрытием (д);

С антикоррозионным покрытием (а).

4.1.10. По способу создания диспергированного потока оросители подразделяют на:

Прямоструйные;

Ударного действия;

Завихренные.

4.2. Обозначение оросителей должно иметь следующую структуру:

Х Х Х Х - Х X X Х - Х / Х Х Х Х Х - Х

┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─ ┬─

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │

Наличие теплового │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Условное

Замка (С, Д) и/или│ │ │ │ │ │ │ │ │ │ │ │ │ │ │наимено-

Управляемого │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ваниепривода (Э, Г, П, │ │ │ │ │ │ │ │ │ │ │ │ │ │ │оросите-

В, К) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ля (тип)

──────────────────┘ │ │ │ │ │ │ │ │ │ │ │ │ │ └────────

Вид ОТВ (В, Р, П, У) │ │ │ │ │ │ │ │ │ │ │ │ │Рабочая

─────────────────────┘ │ │ │ │ │ │ │ │ │ │ │ │коррозионная

Назначение (О, У, П, К, │ │ │ │ │ │ │ │ │ │ │ │среда

З, С, М, В, Ж, S) │ │ │ │ │ │ │ │ │ │ │ └────────────

────────────────────────┘ │ │ │ │ │ │ │ │ │ │Категория

Направленность потока ОТВ │ │ │ │ │ │ │ │ │ │размещения по

(0, 1, 2, 3) │ │ │ │ │ │ │ │ │ │ГОСТ 15150

───────────────────────────┘ │ │ │ │ │ │ │ │ └───────────────

Конструктивное исполнение (Р, │ │ │ │ │ │ │ │Климатическое

Ц, Д, В, Щ, С, П) │ │ │ │ │ │ │ │исполнение по

───────────────────────────────┘ │ │ │ │ │ │ │ГОСТ 15150

Монтажное расположение оросителя │ │ │ │ │ │ └──────────────────

(В, Н, У, Г, Г, Г, Г, П) │ │ │ │ │ │Номинальная темпера-

В Н У │ │ │ │ │ │тура срабатывания, °С───────────────────────────────────┘ │ │ │ │ └─────────────────────

Вид покрытия (о, д, а) │ │ │ │Вид теплового замка

──────────────────────────────────────┘ │ │ │(П, Р, У, К)

│ │ └────────────────────────

│ │Присоединительный размер

│ │(R, G, M)

│ └────────────────────────────

│Коэффициент производительности

└────────────────────────────────

Примечания. 1. В обозначении дренчерных оросителей вид теплового замка и номинальную температуру срабатывания не приводят.

2. Рабочую коррозионную среду приводят, если оросители предназначены для использования в коррозионной среде: аммиачной (), двуокиси серы (), соляных брызг (С). При возможности использования оросителя в нескольких коррозионных средах перечисляют через запятую эти среды. В обозначении оросителя, в котором отсутствуют параметры рабочей коррозионной среды, рабочую коррозионную среду не приводят.

3. Перед структурным обозначением распылителя вместо слова «Ороситель» указывают «Распылитель».

4.3. Примеры условного обозначения:

Спринклерного водяного оросителя специального назначения с концентричным потоком ОТВ, диафрагменного, устанавливаемого вертикально, поток ОТВ направлен вверх, с антикоррозионным покрытием, коэффициентом производительности, равным 1,26, присоединительным размером G , тепловым замком в виде разрывного элемента (термоколбы), номинальной температурой срабатывания 68 °С, климатическим исполнением О, категорией размещения 4, тип согласно ТД - «РОЗА»:

Ороситель CBS0-ДВа 1,26 - G /Р68.О4 - «РОЗА»

Дренчерного водяного распылителя общего назначения, предназначенного для распыливания ОТВ, с потоком ОТВ односторонней направленности, щелевого конструктивного исполнения, устанавливаемого в любом положении в пространстве, без покрытия, коэффициентом производительности, равным 0,45, присоединительным размером R , климатическим исполнением О, категорией размещения 2, тип согласно ТД - «Туман»:

Распылитель ДВО1-ЩП0,45 - R /O2 - «Туман»

5. Общие технические требования

5.1. Характеристики

5.1.1. Требования назначения

5.1.1.1. Оросители должны соответствовать требованиям настоящего стандарта и ТД на конкретный вид оросителя, утвержденным в установленном порядке.

5.1.1.2. Коэффициент производительности - по ТД.

5.1.1.3. Значение интенсивности орошения или удельного расхода ОТВ должно соответствовать приведенным в таблице 1.

Таблица 1

┌──────────────────────┬───────────────────────────────────────────┬─────────────┐

│ Наименование │ Оросители водяные │ Оросители │

│ и характеристика ├─────────────┬──────┬───────┬──────────────┤пенные общего│

│ показателя │ общего │ для │для │ для пневмо- и│ назначения │

│ │ назначения, │завес │стел- │массопроводов,│ │

│ │ в том числе │ │лажных │предупреждения│ │

│ │для подвесных│ │складов│ взрывов и │ │

│ │ потолков, │ │ │ специального │ │

│ │ стеновых │ │ │ назначения │ │

│ │ панелей и │ │ │ │ │

│ │ жилых домов │ │ │ │ │

│ 1. Интенсивность │ │ │ │ │ │

│орошения, дм3/(м х с),│ │ │ │ │ │

│не менее, при: │ │ │ │ │ │

│ S = 12 м2; Н = 2,5 м;│ │ │ │ │ │

│Р = 0,1 (Р = 0,3) МПа;│ │ │ │ │ │

│d , мм: │ │ │ │ │ │

│ y │ │ │ │ │ │

│ от 8 до 10 │0,028 (0,045)│ - │ - │ - │ - │

│ « 10 « 12 │0,056 (0,090)│ - │ - │ - │ - │

│ « 12 « 15 │0,070 (0,115)│ - │ - │ - │ - │

│ « 15 « 20 │0,12 (0,20) │ - │ - │ - │ - │

│ 20 и более │0,24 (0,40) │ - │ - │ - │ - │

│ S = 12 м2; H = 2,5 м;│ │ │ │ │ │

│P = 0,15 (P = 0,30) │ │ │ │ │ │

│МПа; d , мм: │ │ │ │ │ │

│ у │ │ │ │ │ │

│ от 8 до 10 │ - │ - │ - │ - │0,040 (0,056)│

│ « 10 « 15 │ - │ - │ - │ - │0,070 (0,098)│

│ 15 и более │ - │ - │ - │ - │0,160 (0,224)│

│ S = 3 м2; H согласно│ │ │ │ │ │

│ТД; Р = 0,1 МПа; │ │ │ │ │ │

│d , мм: │ │ │ │ │ │

│ у │ │ │ │ │ │

│ 10 │ - │ - │ 0,2 │ - │ - │

│ 12 │ - │ - │ 0,3 │ - │ - │

│ 15 │ - │ - │ 0,4 │ - │ - │

│ Р, S, Н согласно ТД │ - │ - │ - │ По ТД │ - │

├──────────────────────┼─────────────┼──────┼───────┼──────────────┼─────────────┤

│ 2. Удельный расход │ - │По ТД │ - │ - │ - ││при Р, L, В, H - │ │ │ │ │ │

│согласно ТД, │ │ │ │ │ │

│дм3/(м х с) │ │ │ │ │ │

├──────────────────────┴─────────────┴──────┴───────┴──────────────┴─────────────┤

│ Примечания. 1. Для оросителей общего назначения и подвесных потолков │

│монтажного расположения В, Н и У поверхность, защищаемая одним оросителем, │

│должна иметь форму круга площадью не менее 12 м2, а для расположения Г, │

│Г, Г и Г - форму прямоугольника размером не менее 4 х 3 м. │

│ в н у │

│ 2. Форма защищаемой площади, в пределах которой обеспечивается заданная │

│интенсивность орошения для внутристеллажного пространства стеллажных │

│складов, - по ТД. │

│ 3. Давление, высота установки оросителя, форма и размер защищаемой │

│площади, в пределах которых обеспечивается заданная интенсивность орошения │

│оросителями для пневмо- и массопроводов и специального назначения, - по │

│ 4. Для пенных оросителей кратность пены должна быть не менее 5. │

└────────────────────────────────────────────────────────────────────────────────┘

5.1.1.4. Максимальное рабочее давление оросителей - не менее 1 МПа.

5.1.1.5. Коэффициент равномерности орошения оросителей - не более 0,5 (для оросителей, предназначенных для пневмо- и массопроводов, предупреждения взрывов и специального назначения, коэффициент равномерности не регламентируется).

5.1.1.6. Номинальная температура срабатывания спринклерных оросителей, предельное отклонение номинальной температуры срабатывания, номинальное время срабатывания и маркировочный цвет окраски оросителей должны соответствовать значениям, приведенным в таблице 2.

Таблица 2

┌──────────────┬───────────────┬───────────────┬────────────────────────┐

│ Номинальная │ Предельное │ Номинальное │ Маркировочный цвет │

│ температура │ отклонение │ время │ жидкости в стеклянной │

│ срабатывания │ номинальной │ срабатывания, │ термоколбе (разрывном ││ оросителя, °С│ температуры │ с, не более │ термочувствительном │

│ │ срабатывания │ │ элементе) или дужек │

│ │ оросителя, °С │ │ оросителя (в плавком ││ │ │ │ и упругом │

│ │ │ │ термочувствительном │

│ │ │ │ элементе) │

├──────────────┼───────────────┼───────────────┼────────────────────────┤

│ 57 │ +/- 3 │ 300 │ Оранжевый │

│ 68 │ +/- 3 │ 300 │ Красный │

│ 72 │ +/- 3 │ 330 │ То же │

│ 74 │ +/- 3 │ 330 │ « │

│ 79 │ +/- 3 │ 330 │ Желтый │

│ 93 │ +/- 3 │ 380 │ Зеленый │

│ 100 │ +/- 3 │ 380 │ То же │

│ 121 │ +/- 5 │ 600 │ Голубой │

│ 141 │ +/- 5 │ 600 │ То же │

│ 163 │ +/- 5 │ 600 │ Фиолетовый │

│ 182 │ +/- 5 │ 600 │ То же │

│ 204 │ +/- 7 │ 600 │ Черный │

│ 227 │ +/- 7 │ 600 │ То же │

│ 240 │ +/- 7 │ 600 │ « │

│ 260 │ +/- 7 │ 600 │ « │

│ 343 │ +/- 7 │ 600 │ « │

├──────────────┴───────────────┴───────────────┴────────────────────────┤

│ Примечания. 1. При номинальной температуре срабатывания теплового│

│замка от 57 до 74 °С включительно дужки оросителей не окрашивают. │

│ 2. При использовании в качестве разрывного термочувствительного│

│элемента стеклянной термоколбы дужки оросителя допускается не│

│окрашивать. │

│ 3. Условное время срабатывания спринклерных оросителей для подвесных│

│потолков не должно превышать 231 с (для оросителей с температурой││срабатывания до 79 °С) и 189 с (для оросителей с температурой││срабатывания от 79 °С и выше). │

5.1.1.7. Предельно допустимая температура эксплуатации спринклерных оросителей должна быть не менее указанной в таблице 3. Предельно допустимая температура эксплуатации дренчерных оросителей - по ТД на данное изделие.

Таблица 3

┌────────────────┬──────────────────┬────────────────┬──────────────────┐

│ Номинальная │ Предельно │ Номинальная │ Предельно │

│ температура │ допустимая │ температура │допустимая рабочая│

│срабатывания, °С│ рабочая │срабатывания, °С│ температура, °С │

│ │ температура, °С │ │ │

├────────────────┼──────────────────┼────────────────┼──────────────────┤

│ 57 │ До 38 включ.│ 141 <**> │ От 71 до 100 │

│ 68 │ « 50 « │ 163 <*> │ « 101 « 120 │

│ 72 <*> │ « 52 « │ 182 <**> │ « 101 « 140 │

│ 74 <*> │ « 52 « │ 204 <*> │ « 141 « 162 │

│ 79 │От 51 до 58 │ 227 <**> │ « 141 « 185 │

│ 93 <**> │» 53 « 70 │ 240 <**> │ « 186 « 200 │

│ 100 <*> │» 71 « 77 │ 260 │ « 201 « 220 │

│ 121 <*> │» 78 « 86 │ 343 │ « 221 « 300 │

├────────────────┴──────────────────┴────────────────┴──────────────────┤

│ <*> Только у оросителей с плавким термочувствительным элементом. │

│ <**> У оросителей как с плавким, так и разрывным│

│термочувствительным элементом (термоколбой). │

│ Примечание. У оросителей, номинальная температура срабатывания│

│которых 57, 68, 79, 260 и 343 °С, термочувствительным элементом│

│является термоколба. │

└───────────────────────────────────────────────────────────────────────┘

5.1.1.8. При срабатывании теплового замка спринклерного оросителя от источника тепла заклинивание и зависание деталей теплового замка не допускаются.

5.1.1.9. Розеточные разбрызгиватели условным диаметром 8 мм и более должны быть сконструированы таким образом, чтобы сфера диаметром 6 мм могла свободно проходить через проходной канал в штуцере и выходное отверстие.

5.1.1.10. Средний диаметр капель в водяном факеле, образуемом распылителем, должен быть не более 150 мкм.

5.1.1.11. Гидравлические параметры распылителя - по ТД на данное изделие.

5.1.2 Требования надежности

5.1.2.1. Вероятность безотказной работы спринклерных оросителей в режиме ожидания - не менее 0,99 за время не менее 2000 ч.

5.1.2.2. Назначенный срок службы - не менее 10 лет.

5.1.3. Требования стойкости к внешним воздействиям

5.1.3.1. Ороситель не должен иметь механических повреждений после воздействия на него синусоидальной вибрации при частоте от 5 до 40 Гц и амплитуде перемещения 1 мм.

5.1.3.2. Ороситель общего назначения не должен иметь признаков деформации после падения на него с высоты 1 м стального груза массой, равной массе оросителя.

5.1.3.3. Спринклерный ороситель не должен давать утечку и иметь механических повреждений корпуса и запорного устройства после воздействия на него гидравлического удара - циклического давления, изменяющегося от 0,4 до 2,5 МПа со скоростью 10 МПа/с.

5.1.3.4. Розетка, дужки и/или корпус оросителя не должны иметь признаков деформации или повреждений после разбрызгивания или распыления воды под давлением 1,25 , но не менее 1,25 МПа.

5.1.3.5. Спринклерные оросители должны выдерживать пробное гидравлическое давление 3 МПа.

5.1.3.6. Спринклерные оросители должны быть герметичны при гидравлическом давлении 1,5 МПа и пневматическом давлении 0,6 МПа.

5.1.3.7. Спринклерные оросители с разрывным термочувствительным элементом (термоколбой) должны выдерживать вакуум-давление 15 кПа абс.

5.1.3.9. При нагреве спринклерного оросителя с разрывным термочувствительным элементом (термоколбой) в одной жидкости до температуры на 10°С ниже номинальной температуры срабатывания, а затем при охлаждении его в другой жидкости температурой, равной 10°С, не должно быть повреждений теплового замка.

5.1.3.10. При нагревании оросителей с разрывным термочувствительным элементом (термоколбой) до температуры, которая на 5°С ниже нижнего предельного значения номинальной температуры срабатывания, указанного в таблице 2, термочувствительный элемент (термоколба) не должен иметь повреждений.

5.1.3.11. Корпус оросителя должен выдерживать температуру от минус 60 до плюс 800 °С.

5.1.3.12. После воздействия на ороситель в течение 10 сут водного раствора аммиака при температуре 34 °С не должно быть разрушения деталей, зашлакования проходного канала и выходного отверстия оросителя.

5.1.3.13. После воздействия на ороситель в течение 16 сут двуокиси серы при температуре 45 °С не должно быть разрушения деталей, зашлакования проходного канала и выходного отверстия оросителя.

5.1.3.14. После воздействия на ороситель в течение 10 сут туманной среды из соляных брызг при температуре 35 °С не должно быть разрушения деталей, зашлакования проходного канала и выходного отверстия оросителя.

5.1.4. Конструктивные требования

5.1.4.1. Присоединительные резьбовые размеры оросителей приведены в таблице 4.

Таблица 4

┌─────────────────────────────────┬─────────────────────────────────────┐

│ Условный диаметр выходного │ Наружная присоединительная резьба │

│ отверстия, мм │ │

├─────────────────────────────────┼─────────────────────────────────────┤

│ До 8 │ R 3/8 │

│ От 8 « 12 │ R 1/2 │

│ « 12 « 15 │ R 1/2 или 3/4 │

│ 15 и более │ Не нормируется │

├─────────────────────────────────┴─────────────────────────────────────┤

│ Примечание. Для оросителей, имеющих выходное отверстие, форма│

│которого отличается от формы круга, и максимальный линейный размер,│

│превышающий 15 мм, а также для оросителей, предназначенных для│

│пневмо- и массопроводов, а также оросителей специального назначения│

│размер наружной присоединительной резьбы не регламентируется. │

└───────────────────────────────────────────────────────────────────────┘

5.1.4.2. Условный диаметр и наружная присоединительная резьба оросителей для пневмо- и массопроводов, а также оросителей специального назначения должны соответствовать ТД на изделия.

Примечание.

Взамен ГОСТ 16093-81 Приказом Ростехрегулирования от 02.03.2005 № 39-ст с 1 июля 2005 года введен в действие ГОСТ 16093-2004.

5.1.4.3. Оросители должны иметь размер присоединительной резьбы по ГОСТ 6211, ГОСТ 6357, ГОСТ 16093.

5.1.4.4. Оросители должны иметь размеры «под ключ» по ГОСТ 6424 и ГОСТ 13682 или под «спецключ», входящий в комплект поставки партии оросителей.

5.1.4.5. Конструкция оросителей должна исключать возможность их регулирования, разборки и повторной сборки в процессе эксплуатации.

5.1.4.6. Выходные отверстия распылителей должны быть защищены от воздействия загрязняющих факторов внешней среды.

5.1.4.7. Защитные приспособления (декоративные корпуса, колпачки) не должны снижать эффективность действия оросителей при разбрызгивании или распылении.

5.1.4.8. Все оросители с выходным отверстием условным диаметром (или одним из линейных размеров) менее 8 мм должны быть снабжены конструктивно встроенными фильтрами, выполненными из коррозионно-стойкого материала. Минимальный размер ячеек (отверстий) фильтра должен быть не более 80% минимального размера защищаемого выходного отверстия.

5.2. Комплектность

5.2.1. В комплект поставки совместно с оросителями входит:

Техническое описание, инструкция по монтажу и эксплуатации;

Паспорт (или паспорт, совмещенный с техническим описанием и инструкцией по эксплуатации по ГОСТ 2.601);

Комплект инструмента и принадлежностей, необходимых для монтажа и обслуживания.

5.2.2. Документация должна быть представлена на русском языке в том виде, в каком она будет поставляться отечественным потребителям.

5.2.3. В паспорте на оросители, кроме требований, изложенных в 5.1, должны быть указаны:

Для оросителей общего назначения и оросителей для подвесных потолков - давление, при котором обеспечивается нормативная интенсивность орошения защищаемой площади, а также эпюры интенсивности орошения с высоты 2,5 м при давлении 0,1; 0,2; 0,3 и 0,4 МПа;

Для оросителей для водяных завес - давление, высота установки оросителя, форма и размер водяной завесы (защищаемой площади), в пределах которых обеспечивается нормативный удельный расход или удельный расход по ТД, а также эпюры удельного расхода с фиксированного расстояния при давлении 0,1; 0,2; 0,3 и 0,4 МПа.

5.3. Маркировка

5.3.1. На ороситель должна быть нанесена маркировка, содержащая:

Товарный знак предприятия-изготовителя;

Номинальную температуру срабатывания спринклерного оросителя;

Коэффициент производительности;

Наличие теплового замка или управляемого привода: С - спринклерный (допускается не наносить), Д - дренчерный (допускается не наносить); с управляемым приводом: Э - электрическим, Г - гидравлическим, П - пневматическим, В - пиротехническим, К - комбинированным;

Назначение: О - общего назначения; для подвесных потолков и стеновых панелей: У - углубленные, П - потайные, К - скрытые; З - для завес; С - для стеллажных складов; М - для пневмо- и массопроводов; В - для предупреждения взрывов; Ж - для жилых домов; S - специального назначения;

Условное обозначение ОТВ (для воды допускается не наносить): В - водяные, Р - для водных растворов, П - пенные, У - универсальные;

Монтажное расположение: В - устанавливаемые вертикально, поток ОТВ из корпуса направлен вверх; Н - устанавливаемые вертикально, поток ОТВ из корпуса направлен вниз; У - устанавливаемые вертикально, поток ОТВ из корпуса направлен вверх или вниз (универсальные); Г - устанавливаемые горизонтально, поток ОТВ направлен вдоль направляющей лопатки; - устанавливаемые вертикально, поток ОТВ из корпуса направлен вверх, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя); - устанавливаемые вертикально, поток ОТВ из корпуса направлен вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя); - устанавливаемые вертикально, поток ОТВ из корпуса направлен вверх или вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) (универсальные); П - устанавливаемые в любом пространственном положении;

Присоединительный размер оросителя: буквенно-цифровое обозначение, например М20 - метрическая резьба диаметром 20 мм, G1 - трубная цилиндрическая резьба диаметром 1 дюйм, R2 - трубная коническая резьба диаметром 2 дюйма (для оросителей с конической резьбой R3/8, 1/2, 3/4 присоединительный размер допускается не проставлять);

Год выпуска;

5.3.2. Маркировку условного обозначения оросителя проставляют в буквенном обозначении: первая буква отражает наличие теплового замка или управляемого привода, вторая - назначение, третья - условное обозначение ОТВ, четвертая буква отражает монтажное положение - проставляют через тире, пятый знак - присоединительный размер оросителя (допускается проставлять отдельно).

Пример маркировки: «ВМП-ВМ20» или «ВМП-В» и «М20» - спринклерный ороситель с пиротехническим приводом, предназначенный для пневмо- и массопроводов, огнетушащим веществом является пенный раствор, устанавливаемый вертикально, поток ОТВ из корпуса направлен вверх, резьба метрическая диаметром 20 мм.

Коэффициент производительности проставляют отдельно.

Номинальную температуру срабатывания спринклерного оросителя проставляют с указанием единицы измерения (°С), а также цветовым обозначением в зависимости от номинальной температуры срабатывания в соответствии с таблицей 2.

Год выпуска проставляют числовым обозначением, например «02».

Маркировку условного обозначения оросителя, коэффициента производительности, номинальной температуры, года выпуска проставляют в любом месте корпуса или розетки оросителя.

5.3.3. Маркировку следует проводить любым способом, обеспечивающим ее четкость и сохранность в течение всего срока службы оросителя.

5.4. Упаковка

5.4.1. Упаковка должна исключать свободное перемещение оросителей.

5.4.2. В каждую тару должен быть вложен паспорт и упаковочный лист, содержащий:

Наименование, тип и основные параметры оросителей;

Число оросителей;

Номер партии;

Дату упаковки.

6. Требования безопасности

6.1. Требования безопасности - по ГОСТ 12.2.003.

7. Правила приемки

7.1. Оросители следует подвергать испытаниям:

Приемосдаточным;

Периодическим;

Типовым;

Сертификационным.

7.2. Номенклатура приемосдаточных и периодических испытаний должна соответствовать таблице 5.

Испытаниям на герметичность и вакуум при приемосдаточных испытаниях подвергают всю партию оросителей.

Таблица 5

Вид испытаний и проверок Номер пункта Необходимость проведения испытаний

Технических требований Методов испытаний приемосдаточных периодических сертификационных

1. Проверка наличия технических показателей на оросители 5.1.1.2 - 5.1.1.7,5.1.1.11, 5.2.3 8.1 + + +

2. Визуальный осмотр, проверка комплектности поставки и соответствия оросителей конструктивным требованиям 5.1.4.1 - 5.1.4.8,5.2.1, 5.2.2 8.1 + + +

3. Проверка маркировки 5.3.1 - 5.3.3 8.1 + + +

4. Инструментальная проверка размеров на соответствие технической документации 5.1.4.1 - 5.1.4.4 8.1 + + +

5. Испытание на устойчивость к климатическим воздействиям 5.1.3.8 8.2 - + -

6. Испытание на виброустойчивость <*> 5.1.3.1 8.3 - + -

7. Испытание на устойчивость к воздействию водного раствора аммиака <**> 5.1.3.12 8.4 - + -

8. Испытание на устойчивость к воздействию двуокиси серы <**> 5.1.3.13 8.5 - + -

9. Испытание на устойчивость к воздействию туманной среды из соляных брызг <**> 5.1.3.14 8.6 - + -

10. Испытание на удароустойчивость5.1.3.2 8.7 - + +

11. Испытание на устойчивость к воздействию смены температур 5.1.3.9 8.8 - + -

12. Испытание на теплостойкость 5.1.3.10 8.9 - + -

13. Испытание на гидравлический удар 5.1.3.3 8.10 + + -

14. Испытание на вакуум 5.1.3.7 8.11 + + -

15. Испытание на прочность гидравлическим давлением 5.1.3.5 8.12 + + +

16. Испытание на герметичность гидравлическим и пневматическим давлением 5.1.3.6 8.13 + + +

17. Испытание на срабатывание теплового замка 5.1.1.8 8.18 - + +

18. Проверка температуры срабатывания 5.1.1.6 8.14 + + +

19. Проверка условного времени срабатывания 5.1.1.6 8.15 -8.17 - + +

20. Проверка термостойкости корпуса <***> 5.1.3.11 8.19 - + -

21. Проверка проходного канала 5.1.1.9 8.20 - + +

22. Испытание на прочность розетки дужек и/или корпуса 5.1.3.4 8.21 - + -

23. Проверка коэффициента производительности 5.1.1.2 8.22 - + +

24. Проверка защищаемой площади, равномерности и интенсивности орошения (для оросителей общего назначения и оросителей для подвесных потолков) 5.1.1.3, 5.1.1.5 8.23 - + +

25. Проверка защищаемой площади, равномерности и интенсивности орошения (для оросителей, предназначенных для стеллажных складов) 5.1.1.3, 5.1.1.5 8.24 - + +

26. Проверка защищаемой площади, интенсивности орошения (для оросителей, предназначенных для пневмо- и массопроводов и специального назначения) <**> 5.1.1.3 8.41 - + +

27. Проверка равномерности орошения, удельного расхода, формы и размера водяной завесы(защищаемой площади) 5.1.1.3, 5.1.1.5 8.27 -8.39 - + +

28. Проверка кратности пены, защищаемой площади, равномерности и интенсивности орошения (для пенных оросителей) 5.1.1.3, 5.1.1.5 8.40 - + +

29. Проверка защищаемой площади, равномерности и интенсивности орошения (для распылителей) 5.1.1.3, 5.1.1.5,5.1.1.11 8.25 - + +

30. Проверка среднего диаметра капель распылителей 5.1.1.10 8.26 - + +

31. Проверка параметров управляемого привода (рабочего напряжения, тока, сопротивления изоляции или давления рабочего тела) 6.2 8.42 - + +

<*> Испытания не проводят, если конструкция оросителя выполнена

Монолитной без составных частей.

<**> Испытания проводят при наличии в ТД соответствующих параметров.

<***> Испытаниям на термостойкость подвергают конструкции оросителей

С внешним приводом по методике, изложенной в ТД или разработанной

Испытательной лабораторией. При сертификационных испытаниях

Дополнительный объем испытаний на данный ороситель определяет

Испытательная лаборатория.

Примечание. Знак «+» означает, что испытания проводят, знак «-» -

Испытания не проводят.

7.3. Периодические испытания проводят не реже одного раза в год не менее чем на 25 оросителях. Алгоритм проведения периодических испытаний оросителей представлен на рисунке

Рисунок 1. Алгоритм проведения

Периодических испытаний оросителей

7.4. Типовые испытания проводят при изменении технологии, конструкции, замене материала и других изменениях в полном объеме периодических испытаний.

7.5. Испытания на вероятность безотказной работы (на надежность) спринклерных оросителей следует проводить не реже одного раза в три года. Испытаниям подвергают оросители, прошедшие испытания по пунктам 1 - 4 и 16 таблицы 5.

7.6. Сертификационные испытания проводят не менее чем на 28 оросителях. Алгоритм проведения сертификационных испытаний оросителей представлен на рисунке 2.

Примечание. - цифра в квадрате обозначает номер испытания (пункт таблицы 5); - цифра над стрелкой обозначает количество оросителей, подвергаемых данному виду испытаний; знак «*» означает, что данные оросители далее испытаниям не подвергают.

Рисунок 2. Алгоритм проведения

Сертификационных испытаний оросителей

7.7. Порядок проведения испытаний, указанных в таблице 5 (пункты 2 - 3, 7 - 9, 11 - 12, 17 - 19 и 29 - 30), между собой не регламентируется.

7.8. Каждый образец оросителя подвергают одному испытанию каждого вида, если иное не оговорено настоящим стандартом.

7.9. Для испытаний оросителей на срабатывание запорного устройства температуру срабатывания, время срабатывания, устойчивость к гидравлическому удару, к воздействию водного раствора аммиака отбирают по пять оросителей; для проверки кратности пены, коэффициента производительности, равномерности и интенсивности орошения - шесть; устойчивости к воздействию двуокиси серы и соляных брызг - по десять; остальным видам испытаний подвергают пятнадцать оросителей.7.10. При необходимости проведения ограниченной номенклатуры испытаний их последовательность сохраняется согласно алгоритму, приведенному на рисунке 1 (за исключением проверок, которые не требуются).

7.11. Если отсутствует необходимость испытаний по пунктам 7 - 9, то для испытания согласно пункту 10 отбирают пятнадцать образцов, прошедших испытания по пункту 6, а для испытаний согласно пунктам 23 - 30 отбирают любые шесть оросителей, прошедших испытания согласно пункту 22.

7.12. Если испытания проводились только по одному из испытаний пунктов 7 - 9, то для испытания согласно пункту 10 отбирают пять образцов, прошедших соответственно испытания по пунктам 7, 8 или пункту 9, и остальные десять образцов, прошедших испытания по пункту 6, а для испытаний согласно пунктам 23 - 30 отбирают пять образцов, прошедших соответственно испытания по пунктам 7, 8 или 9, и один любой другой образец, прошедший испытания по пункту 22.

7.13. Если испытания проводились по любым из двух видов испытаний по пунктам 7 - 9, то для испытания согласно пункту 10 отбирают по пять образцов, прошедших соответственно испытания по пунктам 7 и 8, 8 и 9 или 7 и 9, и остальные пять образцов, прошедших испытания по пункту 6, а для испытаний согласно пунктам 23 - 30 отбирают по три образца, прошедших соответственно по два вида испытаний по пунктам 7 и 8, 8 и 9 или 7 и 9.

7.14. В зависимости от вида оросителя по назначению проводят одно из испытаний по пунктам 24 - 29.

7.15. Если ороситель снабжен тепловым замком и управляемым приводом, то проверку его параметров (рабочие напряжение и ток или давление рабочего тела) осуществляют одновременно с проверкой температуры и времени срабатывания и испытания на срабатывание запорного устройства.

7.16. Если ороситель снабжен только управляемым приводом, то проверку его параметров (рабочее напряжение и ток или давление рабочего тела) допускается осуществлять на шести образцах одновременно с проверкой времени срабатывания.

7.17. Дренчерные оросители испытаниям по пунктам 11 - 19 не подвергают.

7.18. Если согласно ТД имеются дополнительные требования к конструкции, то испытания по данной номенклатуре проводят по методике, специально разработанной и утвержденной в установленном порядке. Допускается проводить данные испытания по методике предприятия-изготовителя, изложенной в ТД. Решение по выбору методики сертификационных испытаний принимает испытательная организация.

7.19. Результаты испытаний считают удовлетворительными, если испытанные оросители соответствуют требованиям настоящего стандарта. При несоответствии одного из образцов хотя бы одному требованию настоящего стандарта следует провести повторные испытания на удвоенном числе оросителей. Результаты повторных испытаний считают окончательными.

7.20. Измерение параметров проводят:

Давления - манометрическими приборами класса точности не ниже 0,6;

Удельного расхода ОТВ - расходомерами, счетчиками или объемным способом с погрешностью не более 5% верхнего предела измерения;

Времени - секундомерами и хронометрами с ценой деления шкалы не более 0,1 с при измерении интервалов времени до 60 с и не более 1 с при измерении интервалов времени от 60 с и более;

Температуры - термометрами с ценой деления 0,1 °С при измерении температуры до 200 °С и с ценой деления 0,5 °С при измерении температуры 200 °С и более или иные контактные преобразователи температуры с погрешностью +/- 2%;

Линейной величины - штангенциркулями с ценой деления не менее 0,1 мм;

Массы - весами с точностью взвешивания +/- 5%;

Объема воды - измерительными цилиндрами вместимостью 0,5; 1 и 2 дм3 с ценой деления соответственно не более 5, 10 и 20 см3;

Электрического сопротивления, напряжения, тока и мощности - мегомметрами, вольтметрами, амперметрами и ваттметрами с погрешностью измерения 1,5%.

7.21. Допуск на начальные значения физических и электрических величин, если это не оговорено особо, принимают равным не более +/- 5%.

7.22. Все испытания следует проводить в нормальных климатических условиях по ГОСТ 15150.

8. Методы испытаний

8.1. Все оросители, подлежащие испытаниям, предварительно осматривают на наличие очевидных дефектов, проверяют комплектность поставки (5.2.1-5.2.3), соответствие оросителей конструктивным требованиям (5.1.4.1-5.1.4.8), контролируют маркировку (5.3.1-5.3.3), соответствие показателей по 5.1.1.2-5.1.1.7, 5.1.1.11 по ТД на оросители. Проверку диаметра или площади выходного отверстия проводят в самом узком месте проходного канала оросителя. Размеры оросителя, размера под ключ, выходного отверстия и ячеек фильтра (5.1.4.1-5.1.4.4) определяют с помощью соответствующих средств измерения.

8.2. При испытании оросителя на устойчивость к климатическим воздействиям (5.1.3.8) проверяют:

Холодоустойчивость при температуре минус (50 +/- 5) °С;

Теплоустойчивость при максимальной температуре согласно ТД на конкретный вид оросителя (с учетом допуска +/- 2 °С), но не менее 50 °С.

Ороситель выдерживают при указанных температурах не менее 3 ч. По истечении этого времени ороситель выдерживают на воздухе при температуре (20 +/- 5) °С не менее 3 ч, после чего проводят внешний осмотр оросителя. Наличие механических повреждений не допускается.

8.3. Испытание оросителя на виброустойчивость (5.1.3.1) проводят на вибростенде, при этом ороситель (оросители) крепят к платформе стенда штуцером вниз. При испытании воздействуют синусоидальной вибрацией вдоль оси резьбового штуцера. Необходимо непрерывно отслеживать частоту вибрации от (5 +/- 1) до (40 +/- 1) Гц при темпе не более 5 мин/октава и амплитуде 1 мм (+/- 15)%. При обнаружении резонансных точек ороситель необходимо подвергать вибрации на каждой резонансной частоте в течение не менее 12 ч. Если резонансная частота не установлена, то ороситель необходимо подвергать вибрации на частоте от (5 +/- 1) до (40 +/- 1) Гц с амплитудой 1 мм +/- 15% в течение не менее 12 ч.

После испытания проводят внешний осмотр оросителя. Наличие механических повреждений не допускается.

8.4. Испытание оросителя на устойчивость к воздействию водного раствора аммиака (5.1.3.12) проводят во влажной смеси паров аммиака и воздуха в течение (240 +/- 2) ч. Вместимость рабочей емкости - (20,0 +/- 0,2) дм3. Рабочая температура паровоздушной среды внутри рабочей емкости - (34 +/- 2) °С; объем водного раствора аммиака - (200 +/- 2) см3; плотность водного раствора аммиака - (0,94 +/- 0,01) кг/дм3 при температуре (15 +/- 2) °С. Расстояние между уровнем жидкости и оросителями - не менее 40 мм. Ороситель следует подвешивать в нормальном монтажном положении.

Давление внутри емкости должно соответствовать атмосферному. Во избежание повышения давления в рабочей емкости она должна вентилироваться через капиллярную трубку. Оросители должны быть защищены от стекания конденсата. Температуру испытаний регистрируют постоянно.

Через (240 +/- 2) ч оросители удаляют из рабочей емкости, промывают в дистиллированной воде и сушат в течение 7 сут при температуре (20 +/- 5) °С и относительной влажности не более 70%.

8.5. Испытание оросителя на устойчивость к воздействию двуокиси серы (5.1.3.13) проводят во влажной смеси паров водного раствора серноватистокислого натрия и воздуха в течение (384 +/- 4) ч при температуре (45 +/- 3) °С. Вместимость рабочей емкости - (10,00 +/- 0,25) дм3. Давление внутри рабочей емкости должно соответствовать атмосферному. Объем водного раствора серноватистокислого натрия в емкости (1000 +/- 25) см3 (в 1000 см3 дистиллированной воды растворяют 40 г кристаллического серноватистокислого натрия). Каждые двое суток в емкость с раствором добавляют 40 см3 раствора серной кислоты, который приготавливают смешиванием 156 см3 кислоты с молярной концентрацией 0,5 моль/дм3 и 844 см3 дистиллированной воды. Ороситель в емкости должен быть подвешен в нормальном монтажном положении. Испытание должно состоять из двух периодов, продолжительность каждого (192 +/- 2) ч. По истечении первого периода ороситель удаляют из емкости, раствор сливают, емкость промывают и заливают в нее вновь приготовленный раствор. Температуру испытаний регистрируют постоянно.

По истечении второго периода ороситель удаляют из рабочей емкости, промывают в дистиллированной воде и сушат в течение 7 сут при температуре (20 +/- 5) °С и относительной влажности не более 70%.

По окончании испытания не должно быть признаков разрушения деталей оросителя, зашлакования проходного канала и выходного отверстия оросителя.

8.6. Испытание оросителя на устойчивость к воздействию туманной среды из соляных брызг (5.1.3.14) проводят во влажной смеси паров хлорида натрия и воздуха в течение (240 +/- 2) ч. Рабочая температура - (35 +/- 2) °С. Плотность водного раствора хлорида натрия - от 1,126 до 1,157 кг/дм3 включительно при температуре 20 °С; водородный показатель - от 6,5 до 7,2 включительно; вместимость рабочей камеры - (0,40 +/- 0,03) м3. Ороситель следует подвешивать в нормальном монтажном положении. Соляной раствор подают из резервуара через распылитель рециркуляцией. Туман должен быть таким, чтобы с каждых 80 см3 площади можно было собрать за час от 1 до 2 см3 раствора. Пробы берут в любых двух местах камеры. Отбор проб проводят не менее одного раза в день. Соляной раствор, стекающий с испытуемых образцов, не должен возвращаться в резервуар для рециркуляции. Температуру испытаний регистрируют постоянно.

Через (240 +/- 2) ч ороситель удаляют из камеры, промывают в дистиллированной воде и сушат в течение 7 сут при температуре (20 +/- 5) °С и относительной влажности не более 70%.

По окончании испытания не должно быть признаков разрушения деталей оросителя, зашлакования проходного канала и выходного отверстия оросителя.

8.7. Испытание оросителя на удароустойчивость (5.1.3.2) проводят следующим образом. С высоты (1,00 +/- 0,05) м на розетку или на торцевую выходную плоскость оросителя падает стальной груз, имеющий форму цилиндра диаметром (12,7 +/- 0,3) мм и массу, эквивалентную массе оросителя, +/- 5%. Груз устанавливают соосно в бесшовной трубе внутренним диаметром (14 +/- 1) мм, которая служит в качестве направляющей для груза. Ороситель устанавливают на стальную опору диаметром (200 +/- 1) мм и высотой (30 +/- 1) мм. Смещение оси трубы относительно оси торцевой плоскости или розетки оросителя не более 2 мм, а относительно вертикальной плоскости - не более 3°.

Наличие на оросителе после падения груза механических повреждений, разрывов, деформации или иных дефектов не допускается.

8.8. Испытание спринклерного оросителя с разрывным термочувствительным элементом (термоколбой) на устойчивость к воздействию смены температур (тепловой удар) (5.1.3.9) проводят путем его выдержки при температуре (20 +/- 5) °С в течение не менее 30 мин. Затем ороситель погружают в емкость с жидкостью вместимостью не менее 3 дм3 температурой на (10 +/- 2) °С ниже номинальной температуры срабатывания оросителя (выдержка в этой среде не менее 10 мин), после чего ороситель погружают в емкость с дистиллированной водой объемом не менее 3 дм3 и температурой (10 +/- 1) °С в течение не менее 1 мин. Ориентация оросителей - вертикально штуцером вниз.

Наличие признаков повреждения термоколбы не допускается.

8.9. Испытание спринклерного оросителя на теплостойкость (воздействие повышенной температуры) (5.1.3.10) проводят путем его нагревания в ванне с рабочим телом объемом не менее 3 дм3 на каждый ороситель от температуры (20 +/- 5) °С до температуры на (11 +/- 1) °С ниже номинальной температуры срабатывания со скоростью не более 20 °С/мин. Затем температуру повышают со скоростью не более 1 °С/мин до температуры, которая на 5 °С ниже нижнего предельного значения номинальной температуры срабатывания, указанной в таблице 2. После этого ороситель охлаждают на воздухе при температуре (20 +/- 5) °С в течение не менее 10 мин.

Наличие признаков повреждения теплового замка не допускается.

8.10. Испытание оросителя на прочность при гидравлическом ударе (5.1.3.3) проводят повышением давления от (0,4 +/- 0,1) до (2,50 +/- 0,25) МПа со скоростью (10 +/- 1) МПа/с. Общее количество циклов должно быть не менее 3000.

Наличие течи, механических повреждений, остаточных деформаций элементов оросителя и разрушения теплового замка не допускаются.

8.11. Испытание на вакуум оросителя с разрывным термочувствительным элементом (термоколбой) (5.1.3.7) проводят путем размещения оросителя в течение не менее 1 мин в отвакуумированной емкости под давлением (15 +/- 2) кПа абс.

Наличие трещин в термоколбе и утечки из нее жидкости не допускается.

8.12. Испытание оросителя на прочность (5.1.3.5) проводят в течение не менее 3 мин при достижении гидравлического давления (3,00 +/- 0,05) МПа. Время нарастания давления - не менее 15 с. Затем давление сбрасывают до нуля и повышают в течение не менее 5 с до (0,05 +/- 0,01) МПа.

Ороситель выдерживают при этом давлении не менее 15 с, после чего давление в течение не менее 5 с увеличивают до (1,00 +/- 0,05) МПа, и ороситель выдерживают при этом давлении не менее 15 с.

Наличие течи и механических повреждений, остаточных деформаций корпуса и разрушения теплового замка не допускаются.

8.13. Испытание оросителя на герметичность (5.1.3.6) проводят при гидравлическом давлении (1,50 +/- 0,05) МПа и при пневматическом давлении (0,60 +/- 0,03) МПа.

Каждое испытание проводят в течение не менее 3 мин. Скорость нарастания давления не более 0,1 МПа/с.

Утечка воздуха через уплотнение запорного устройства не допускается.

8.14. Проверку температуры срабатывания (5.1.1.6) проводят путем нагрева оросителей в жидкой ванне с рабочим телом объемом не менее 3 дм3 на каждый ороситель от температуры (20 +/- 5) °С до температуры на (20 +/- 2) °С ниже номинальной температуры срабатывания со скоростью не более 20 °С/мин. Ороситель при этой температуре выдерживают в течение не менее 10 мин, а затем температуру повышают с постоянной скоростью не более 1 °С/мин до тех пор, пока тепловой замок не разрушится.

Соотношение размеров объема, заполненного жидкостью (длина х ширина х высота), соответственно (1:1:1) +/- 20% или (диаметр х высота), соответственно (1:1) +/- 20%.

Температура срабатывания должна соответствовать значениям, указанным в таблице 2.

В качестве рабочей жидкости следует использовать жидкости, имеющие температуру кипения большую, чем номинальная температура срабатывания спринклерного оросителя (например вода, глицерин, минеральные или синтетические масла).

8.15. Проверку времени срабатывания спринклерного оросителя (5.1.1.6) проводят путем помещения оросителя, находящегося при температуре (20 +/- 2) °С, в термостат с температурой окружающего воздуха на (30 +/- 2) °С выше номинальной температуры срабатывания.

Время срабатывания оросителя с момента помещения его в термостат не должно быть более значений, указанных в таблице 2.

8.16. Время срабатывания оросителя с управляемым приводом (5.1.1.6) определяют с момента подачи внешнего управляющего воздействия до полного открытия проходного сечения.

8.17. Проверку времени срабатывания спринклерных оросителей для подвесных потолков (5.1.1.6) проводят по НПБ 68-98 .

8.18. Срабатывание теплового замка оросителя (5.1.1.8) проверяют при минимальном рабочем давлении +/- 0,01 МПа и максимальном рабочем давлении +/- 0,05 МПа. В качестве источника тепла используют пламенные или беспламенные нагревательные устройства. Проверяют пять оросителей при минимальном рабочем давлении и пять - при максимальном рабочем давлении, но не менее 1 МПа.

При срабатывании оросителя заклинивание или зависание деталей теплового замка не допускается.

8.19. Испытание оросителя на термостойкость (5.1.3.11) проводят следующим образом: корпус оросителя ставят в рабочем положении или на торец штуцера в камеру тепла (холода) при температуре соответственно плюс (800 +/- 20) °С минус (60 +/- 5) °С на время не менее 15 мин. После этого корпус удаляют из камеры тепла (холода) и опускают в водяную ванну объемом не менее 3 дм3 на каждый ороситель температурой (20 +/- 5) °С на время не менее 1 мин, при этом корпус не должен деформироваться или разрушаться.

8.20. Проверку проходного канала розеточных разбрызгивателей (5.1.1.9) осуществляют следующим образом: металлический шарик диаметром мм опускают в канал штуцера, шарик должен беспрепятственно проходить через проходной канал разбрызгивателя.

8.21. Испытание на прочность розетки, дужек и/или корпуса (5.1.3.4) оросителей общего назначения проводят при разбрызгивании или распылении воды под давлением, равным 1,25, но не менее 1,25 МПа, в течение не менее 1,5 мин.

Наличие механических повреждений, остаточных деформаций и разрушений не допускается.

8.22. Коэффициент производительности оросителя К, дм3/с, (5.1.1.2) определяют при давлении, равном 0,300 МПа +/- 5%, по формуле

Где Q - расход воды или водного раствора через ороситель, дм3/с;

Р - давление перед оросителем, МПа.

Коэффициент производительности распылителя с максимальным рабочим давлением более 1,5 МПа определяется при давлении, указанном в ТД на данное изделие.

Ороситель устанавливают в рабочем положении в колено, смонтированное на конце подводящего трубопровода внутренним диаметром не менее 40 мм. Манометр устанавливают на расстоянии (250 +/- 10) мм перед оросителем. Длина прямолинейного участка подводящего трубопровода до места установки манометра - не менее 1600 мм.

Коэффициент производительности оросителя не должен отличаться более чем на 5% указанного в ТД.

8.23. Проверку равномерности, интенсивности орошения и защищаемой площади (5.1.1.3, 5.1.1.5) для водяных оросителей общего назначения монтажного расположения типов В, Н или У и оросителей для подвесных потолков проводят следующим образом. Мерные банки размером (250 +/- 1) х (250 +/- 1) мм и высотой не менее 150 мм устанавливают в шахматном порядке (рисунок 3), интервал между осями банок (0,50 +/- 0,01) м.

Рисунок 3. Схема расположения мерных банок

При испытании водяных оросителей типов В, Н, У

При испытаниях водяных оросителей монтажного расположения типов Г, и мерные банки размещают в шахматном порядке на площади прямоугольника, ограниченного полуосью направления потока (сторона L) и полуосью, перпендикулярной к направлению потока (сторона В) (рисунок 4). Площадь прямоугольника должна составлять 6 м2, а соотношение сторон L:B равно 4:1,5.

Направление тока; - ороситель; - мерные банки

Рисунок 4. Схема расположения мерных банок

При испытании водяных оросителей типов Г, и

Первый ряд по стороне В устанавливают на расстоянии S по направлению потока от крайней точки проекции конца розетки оросителя (расстояние S принимают согласно ТД на ороситель).

Ороситель устанавливают на высоте (2,50 +/- 0,05) м от верхнего среза мерных банок (расстояние измеряют от розетки оросителя).

Плоскость дужек розеточных оросителей типов В, Н, У ориентируют по диагонали квадрата, на котором установлены мерные банки (рисунок 3). Ориентацию других видов оросителей типов В, Н, У осуществляют согласно ТД. Оросители Г, и ориентируют таким образом, чтобы плоскость направления подачи потока ОТВ была параллельна плоскости, проходящей вдоль площади, на которой размещены мерные банки.

При испытании оросителей типа расположения В, формирующих водяной поток выше оросителя, должен использоваться подвесной потолок, расположенный на высоте (0,25 +/- 0,05) м от розетки оросителя. Размеры подвесного потолка не менее (2,5 х 2,5) м. Подвесной потолок должен перекрывать воображаемые линии координат R, м, изображенных на рисунке 3, на (0,25 +/- 0,05) м.

Подачу воды из трубопровода осуществляют при давлении 0,1 МПа +/- 5% и 0,3 МПа +/- 5%. Продолжительность подачи воды не менее 160 с или равна времени заполнения одной из мерных банок.Среднюю интенсивность орошения водяного оросителя I, дм3/(м2 х с), рассчитывают по формуле

Где - интенсивность орошения в i-й мерной банке, дм3/(м2 х с);

N - число мерных банок, установленных на защищаемой площади.

Интенсивность орошения в i-й мерной банке, дм3/(м2 x с), рассчитывают по формуле

Где - объем воды (водного раствора), собранный в i-й мерной банке, дм3;

T - продолжительность орошения, с.

Равномерность орошения, характеризуемую значением среднеквадратического отклонения S, дм3/(м2 х с), рассчитывают по формуле

Коэффициент равномерности орошения R рассчитывают по формуле

Оросители считают выдержавшими испытания, если средняя интенсивность орошения не ниже нормативного значения при коэффициенте равномерности орошения не более 0,5 и количество мерных банок с интенсивностью орошения менее 50% от нормативной интенсивности не превышает: двух - для оросителей типов В, Н, У и четырех - для оросителей типов Г, и.

Коэффициент равномерности не учитывают, если интенсивность орошения в мерных банках менее нормативного значения в следующих случаях: в четырех мерных банках - для оросителей типов В, Н, У и шести - для оросителей типов Г, и.

8.24. Испытания оросителей для стеллажных складов на интенсивность, равномерность орошения и защищаемую площадь (5.1.1.3, 5.1.1.5) проводят следующим образом.

Мерные банки размером (250 +/- 1) х (250 +/-1) мм и высотой не менее 150 мм размещают в пределах одного квадранта защищаемой площади, указанной в ТД на конкретный ороситель, вплотную друг к другу.

Высота расположения и ориентация оросителя относительно защищаемой площади - по ТД на конкретный тип оросителя.

Порядок определения интенсивности, равномерности орошения и защищаемой площади оросителей аналогичен порядку, изложенному в 8.23.

Ороситель считают выдержавшим испытания, если средняя интенсивность орошения не ниже нормативного значения при коэффициенте равномерности орошения не более 0,5 и количество мерных банок с интенсивностью орошения менее 50% нормативной интенсивности не превышает 15% общего количества мерных банок.

Коэффициент равномерности не учитывают, если интенсивность орошения менее нормативного значения в 25% мерных банок от их общего количества.

8.25. Проверку защищаемой площади, равномерности и интенсивности орошения распылителями (5.1.1.3, 5.1.1.5) проводят по методикам, утвержденным в установленном порядке. Проверку гидравлических параметров распылителей (5.1.1.11) проводят по методам, изложенным в 8.22.

8.26. Определение дисперсности распыленной струи воды (5.1.1.10) проводят методом улавливания капель воды на смесь, состоящую из 1/4 весовой части технического вазелина и 3/4 частей вазелинового масла. Плошки с нанесенным на нее слоем этой смеси (массой не менее 3 г, площадью захвата не менее 7 см2 каждая) расставляют в плоскости, перпендикулярной к оси распылителя, на расстоянии, равном половине дальности эффективного действия струй, равномерно от центра к максимальному радиусу факела струи. Плошки накрывают отсекателем, который убирают после выхода распылителя на рабочий режим на время, необходимое для фиксирования в плошке не менее 100 капель, и при этом оставалось свободное пространство между каплями. Давление подачи должно соответствовать минимальному рабочему давлению. Затем плошки фотографируют. Среднеарифметический диаметр капель, мкм, в отдельной плошке рассчитывают по формуле

Где - диаметр капли в заданном интервале размеров, мкм;

Число капель диаметром.

Средний диаметр капель вычисляют как среднеарифметическое значение диаметров капель во всех плошках.

8.27. Проверку равномерности орошения, удельного расхода воды, формы и размера водяной завесы (защищаемой площади) оросителей для водяных завес, формирующих вертикальное направление водяного потока (5.1.1.3, 5.1.1.5), проводят следующим образом.

8.27.1. Мерные банки размером (250 +/- 1) х (250 +/- 1) мм и высотой не менее 150 мм размещают вплотную друг к другу или в шахматном порядке на площади прямоугольной формы, соответствующей форме защищаемой площади, указанной в ТД. Монтаж оросителя на стенде (высота над кромкой мерных банок, место расположения оросителя и ориентация оросителя относительно защищаемой площади) осуществляют согласно ТД на конкретный ороситель.

При концентричном орошении относительно оси оросителя мерные банки устанавливают вплотную друг к другу или в шахматном порядке в пределах 1/4 площади орошения (рисунок 5), расстояние R принимают согласно ТД.

Ороситель; - мерные банки

Рисунок 5. Схема расположения мерных банок

При испытании оросителей, формирующих концентричное орошение

Параметры подводящего трубопровода аналогичны параметрам трубопровода при проведении проверки коэффициента производительности (8.22).

8.27.2. Если глубина водяной завесы (защищаемой площади) равна или менее ширины мерной банки, т.е. 250 мм или менее, то мерные банки устанавливают равномерно и соосно защищаемой зоне, причем расположение крайних мерных банок должно совпадать с границами защищаемой площади по ее ширине (рисунок 6а).

8.27.3. Если глубина водяной завесы (защищаемой площади) 251 - 500 мм включительно, то мерные банки устанавливают равномерно в два ряда в перехлест, причем их расположение должно совпадать с контуром защищаемой площади (рисунок 6б).

Мерная банка; - защищаемая площадь;

L - ширина защищаемой площади; В - глубина защищаемой

Площади; , - межосевое расстояние между смежнымимерными банками в ряду по ширине завесы;

Межосевое расстояние между смежными мерными

Банками в ряду по глубине завесы

Примечание. Пространственное положение оросителей по отношению к защищаемой зоне - по ТД на конкретное изделие.

Рисунок 6. Схема расположения мерных банок

При испытании оросителей, формирующих вертикальноенаправление потока ОТВ8.27.4. Если ширина и/или глубина водяной завесы (защищаемой площади) более 500 мм, то мерные банки (расчетное количество мерных банок менее 32 шт.) размещают равномерно в пределах защищаемой площади, причем периферийные ряды мерных банок должны совпадать с контуром защищаемой площади (рисунок 6в).

8.28. Количество мерных банок и межосевое расстояние между ними с учетом условий, изложенных в 8.27.2 - 8.27.4, рассчитывают следующим образом.

8.28.1. Количество мерных банок в одном ряду по глубине завесы рассчитывают по формуле (целое число без учета дробного остатка)

Где В - глубина водяной завесы (защищаемой зоны), мм.

8.28.2. Межосевое расстояние между мерными банками, мм, в ряду по глубине завесы В рассчитывают по формуле

Где R - числитель дробного остатка согласно формуле (7), мм.

8.28.3 Количество мерных банок в ряду по ширине завесы L рассчитывают по формуле (целое число без учета дробного остатка)

8.28.4. Межосевое расстояние между смежными мерными банками, мм, в ряду по ширине завесы L рассчитывают по формуле

Где r - числитель дробного остатка согласно формуле (9), мм.

8.29. При глубине водяной завесы 250 мм и менее и ширине защищаемой зоны более 3000 мм допускается мерные банки располагать через одну относительно их расположения, описанного в 8.27.2 (см. рисунок 6а).

8.30. При расчетном количестве мерных банок более 32 шт. допускается мерные банки располагать согласно рисунку 6г. При этом следует руководствоваться условием, что количество мерных банок по данному варианту должно быть не менее 32 шт. Мерные банки устанавливают равномерно, не выходя за пределы контура защищаемой площади, расположение периферийных мерных банок должно совпадать с контуром защищаемой площади.

8.31. Межосевое расстояние в ряду между мерными банками, мм, и между рядами мерных банок, мм, при расположении банок согласно рисунку 6г рассчитывают по формулам:

8.32. Если согласно ТД разница в диапазоне допускаемых высот расположения оросителя относительно пола составляет более 0,5 м, то испытания каждого оросителя проводят при двух предельных значениях высоты.

8.33. Если ороситель предназначен для напольного монтажа, то за эквивалент поверхности пола принимают плоскость, проходящую по верхним кромкам мерных банок. Если при этом проекция оросителя в соответствии с техническими требованиями находится в защищаемой площади (т.е. в зоне расположения мерных банок), то мерную банку в месте установки оросителя изымают.

8.34. Подачу воды из трубопровода осуществляют при номинальном рабочем давлении +/- 5%. Продолжительность подачи воды не менее 160 с или равна времени заполнения одной из мерных банок.8.35. Удельный расход воды, дм3/(м х с), одного ряда мерных банок по глубине завесы рассчитывают по формуле

Где - удельный расход в i-й мерной банке, дм3/(м х с).

Удельный расход, дм3/(м х с), рассчитывают по формуле

Где - объем воды, собранный в i-й мерной банке, дм3;

T - время орошения, с.

Средний удельный расход Q, дм3/(м x с), на 1 м ширины завесы, приведенный ко всей ширине завесы, рассчитывают по формуле

Где - число рядов вдоль защищаемой площади (по ширине завесы).

8.36. Равномерность орошения характеризуется значением среднеквадратического отклонения S, которое рассчитывают по формуле

8.37. Коэффициент равномерности орошения R рассчитывают по формуле

8.38. Оросители считают выдержавшими испытания при удельном расходе для рядов мерных банок по глубине завесы, равном или более 50% нормативного удельного расхода, при коэффициенте равномерности орошения не более 0,5 и удельном расходе, приведенном ко всей ширине завесы, не менее нормативного значения (допускается 10% рядов вдоль ширины завесы с интенсивностью менее 50% нормативного удельного расхода). Если не менее 75% рядов по глубине завесы имеют удельный расход, равный или более нормативного значения, и удельный расход, приведенный ко всей ширине завесы, не менее заданного значения, то коэффициент равномерности не учитывают.

8.39. Проверку равномерности орошения, удельного расхода воды, ширины и глубины водяной завесы (защищаемой площади) для оросителей, формирующих горизонтальное направление водяного потока (5.1.1.3), проводят следующим образом.

8.39.1. Устанавливают ороситель на испытательном стенде (рисунок 7) по схеме, аналогичной монтажной схеме размещения оросителя относительно воображаемого защищаемого проема, приведенной в ТД на данный ороситель. Мерные банки размером (250 +/- 1) х (250 +/- 1) мм и высотой не менее 150 мм размещают таким образом, чтобы стекающая с вертикальной поверхности вода или водный раствор полностью собирались в смежные со стеной мерные банки. Размещение оросителя относительно защищаемой вертикальной плоскости должно соответствовать требованиям ТД на конкретный тип оросителя.

1 - ороситель; 2 - воображаемый проем; 3 - мерные банки;

4 - линии воображаемого проема; h, H, Z - расстояния

Соответственно от розетки оросителя до потолка,

До нижней плоскости воображаемого проема и до стены,

Указанные в ТД на конкретный тип оросителя;

Х - ширина проема; У - высота проема

Рисунок 7. Схема размещения оросителей и мерных банок

При испытании оросителей, формирующих горизонтальноенаправление потока ОТВ8.39.2. Количество мерных банок z в каждом ряду по глубине завесы при направлении потока воды или водного раствора перпендикулярно к стене рассчитывают по формуле (целое число без учета дробного остатка)

Где Z - расстояние от стены до оросителя, мм.

8.39.3. Количество мерных банок x в каждом ряду по ширине завесы рассчитывают по формуле (целое число без учета дробного остатка)

Где X - ширина проема, мм.

8.39.4. При расчетном количестве банок более 32 шт. допускается устанавливать банки на равном расстоянии друг от друга в рядах по ширине и глубине завесы таким образом, чтобы общее количество мерных банок было не менее 32 шт.

8.39.5. Подачу воды из трубопровода осуществляют при минимальном рабочем давлении +/- 5%. Продолжительность подачи воды не менее 160 с или равна времени заполнения одной из мерных банок.Параметры подводящего трубопровода аналогичны параметрам трубопровода при проведении проверки коэффициента производительности (8.22).

8.39.6. Удельный расход воды по ширине ниспадающей завесы определяют по формулам (13) - (15).

8.39.7. Равномерность орошения рассчитывают по формуле (16).

8.39.8. Коэффициент равномерности орошения рассчитывают по формуле (17).

8.39.9. Оросители считают выдержавшими испытания при удельном расходе для рядов мерных банок по глубине завесы, равном или более 50% нормативного удельного расхода при коэффициенте равномерности орошения не более 0,5 и удельном расходе, приведенном ко всей ширине завесы, не менее нормативного значения (допускается 10% рядов вдоль ширины завесы с интенсивностью менее 50% нормативного удельного расхода). Если не менее 75% рядов по глубине завесы имеют удельный расход, равный или более нормативного значения, и удельный расход, приведенный ко всей ширине завесы, не менее нормативного значения, то коэффициент равномерности не учитывают.

8.40. Проверку кратности пены, защищаемой площади, равномерности и интенсивности орошения пенными оросителями (5.1.1.3, 5.1.1.5) проводят следующим образом.

8.40.1. Мерные банки размером (500 +/- 2) х (500 +/- 2) мм и высотой не менее 200 мм располагают вплотную друг к другу (рисунок 8). Ороситель устанавливают на высоте (2,50 +/- 0,05) м от верхнего среза мерных банок (расстояние измеряется от розетки). Ориентация дужек оросителя относительно площади, на которой установлены мерные банки, аналогична указанной в 8.23.

Ороситель; - мерные банки;

Рисунок 8. Схема расположения мерных банок

При испытании пенных оросителей

8.40.2. Тип пенообразователя и его концентрация - согласно ТД на пенные оросители (при сертификационных испытаниях используют один из пенообразователей, указанных в ТД). Подачу раствора пенообразователя осуществляют при минимальном рабочем давлении +/- 5%. Испытание заканчивают в момент заполнения пеной одной из мерных банок, фиксируя время ее заполнения.

8.40.3. Среднюю интенсивность орошения пенного оросителя I определяют по формуле (2). Интенсивность орошения в i-й мерной банке, дм3/(с x м2), рассчитывают по формуле

Где - объем жидкой фазы раствора пенообразователя, собранной в i-й мерной банке, дм3;

Время подачи раствора пенообразователя, с.

8.40.4. Равномерность орошения пенным оросителем определяют по формуле (4), коэффициент равномерности орошения - по формуле (5).

8.40.5. Оросители считают выдержавшими испытания, если при коэффициенте равномерности орошения не более 0,5 количество мерных банок с интенсивностью орошения менее 50% нормативной интенсивности - не более двух; при этом средняя интенсивность орошения должна быть не менее нормативной. Оросители считают также выдержавшими испытания, если интенсивность орошения мерных банок (кроме четырех мерных банок) более нормативной; при этом коэффициент равномерности не учитывают.

8.40.6. Кратность пены определяют как отношение объема пены в мерной банке к объему раствора пенообразователя, осажденного в данной банке.

Кратность пены измеряют в трех мерных банках, расположенных по линии дужек оросителя.

Среднее значение кратности пены k рассчитывают по формуле

Где - кратность пены в i-й мерной банке.

Критерии положительной оценки результатов испытаний: среднее значение кратности пены не менее пяти и кратность пены в каждой мерной банке не менее четырех.

8.41. Проверку равномерности и интенсивности орошения защищаемой площади оросителями, предназначенными для пневмо- и массопроводов, и оросителями специального назначения (5.1.1.3) проводят по специальным методикам, утвержденным в установленном порядке, или по методикам, изложенным в ТУ или в ТД на конкретный ороситель. Решение по выбору методики сертификационных испытаний принимает испытательная лаборатория.

8.42. Испытания управляющего привода оросителей (6.2) проводят по специальным методикам, утвержденным в установленном порядке, или по методикам, изложенным в ТУ или в ТД на конкретный ороситель. Решение по выбору методики сертификационных испытаний принимает испытательная лаборатория.

8.43. Испытания на вероятность безотказной работы спринклерных оросителей (на надежность) (5.1.2.1) проводят в соответствии с ГОСТ 27.410 одноступенчатым методом при предельно допустимой рабочей температуре в соответствии с таблицей 3. Приемочный уровень вероятности срабатывания принимают равным 0,996, браковочный уровень надежности 0,97. Риск изготовителя принимают равным 0,1, риск потребителя - 0,2. Объем выборки - 53 спринклерных оросителя. Приемочное число отказов равно 0. Продолжительность испытаний не менее 2000 ч при гидравлическом давлении (1,25 +/- 0,10) МПа или пневматическом давлении (0,6 +/- 0,03) МПа. Допускается обеспечивать аналогичную нагрузку на запорное устройство пневматическим давлением или механическим способом.

В качестве критерия отказа принимают нарушение герметичности хотя бы одного из оросителей.

8.44. Контроль назначенного срока службы (5.1.2.2) проводят в соответствии с РД 50-690 .

8.45. Оформление результатов испытаний

Результаты испытаний на соответствие требованиям настоящего стандарта оформляют в виде протоколов. Протоколы испытаний должны содержать условия, режимы и результаты испытаний, а также сведения о дате и месте проведения испытаний, условное обозначение образцов и их краткую характеристику.

9. Транспортирование и хранение

9.1. Транспортирование оросителей в упаковке следует проводить в крытых транспортных средствах любого вида в соответствии с правилами, действующими на данном виде транспорта.

9.2. При погрузке и выгрузке следует избегать ударов и других неосторожных механических воздействий на тару.

9.3. Хранение оросителей - по ГОСТ 15150.

ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ ТЕПЛОВОЙ

ИНЕРЦИОННОСТИ СПРИНКЛЕРНЫХ ОРОСИТЕЛЕЙ

А.1. Общие положения

А.1.1. Метод предназначен для определения коэффициента тепловой инерционности и коэффициента потерь тепла за счет теплопроводности водяных спринклерных оросителей без покрытия с тепловым замком в виде плавкого элемента с номинальной температурой срабатывания до 93 °С.

А.1.2. Коэффициент, м х, является мерой чувствительности спринклерного оросителя к динамическому нагреву. Коэффициент, является мерой влияния на тепловую инерционность оросителя отвода тепла от теплового замка к корпусу оросителя и подводящему трубопроводу за счет теплопроводности. Указанные коэффициенты используют для определения времени срабатывания оросителей в условиях пожара, обоснования требований к их размещению в помещениях.

А.2. Определение коэффициента тепловой инерционности спринклерных оросителей

А.2.1. Коэффициент тепловой инерционности спринклерного оросителя рассчитывают по формуле

Где - время срабатывания оросителя, с;

Коэффициент потерь тепла за счет теплопроводности, ; = скорость воздушного потока на рабочем участке испытательного канала, м/с;

Температура воздуха на рабочем участке испытательного канала, °С;

Номинальная температура срабатывания оросителя; °С;

Температура окружающей среды в помещении, °С.

А.2.2. Параметры, входящие в формулу (А.1), определяют при проведении испытаний оросителей на тепловое воздействие потока воздуха с постоянными значениями температуры и скорости.

А.2.2.1. Перед испытаниями обеспечивают герметичность резьбового соединения оросителя с патрубком, имитирующим подводящий трубопровод. В патрубок заливают не менее 25 см3 воды. Крышку рабочего участка установки с размещенным на ней оросителем и патрубком выдерживают не менее 30 мин для выравнивания их температуры с температурой окружающей среды.

А.2.2.2. Испытания проводят путем внесения (за время не более 2 с) оросителя в рабочий участок испытательного канала при скорости воздушного потока от (2,4 +/- 0,1) до (2,6 +/- 0,1) м/с с заданной температурой, которую выбирают из таблицы А.1 в зависимости от номинальной температуры срабатывания оросителей.

Таблица А.1

┌──────────────────────┬─────────────────────────────────────────┐

│ Номинальная │ Температура воздушного потока, °С │

│ температура │ +/- 2 │

│ срабатывания, °С ├────────────────────┬────────────────────┤

│ │ t │ t │

│ │ в1 │ в2 │

├──────────────────────┼────────────────────┼────────────────────┤

│ 57, 68, 72, 74 │ От 129 до 141 │ От 85 до 91 │

│ 79, 93 │ « 191 « 203 │ « 124 « 130 │

└──────────────────────┴────────────────────┴────────────────────┘

А.2.2.3. Испытания проводят для следующих ориентаций теплового замка оросителя по отношению к направлению потока воздуха:

Воздушный поток перпендикулярен к оси оросителя и плоскости его дужек;

Воздушный поток параллелен к оси оросителя и плоскости его дужек.

А.2.2.4. Для каждой ориентации теплового замка испытывают по пять оросителей и регистрируют время их срабатывания с погрешностью не более 0,2 с.

А.2.2.5. За время срабатывания оросителей при соответствующей ориентации принимают среднеарифметическое значение, определенное по результатам пяти испытаний.

А.2.2.6. При испытаниях температуру окружающей среды в помещении измеряют с погрешностью не более 0,5 °С, а температуру прокачиваемого воздушного потока - с погрешностью не более 1 °С.

А.3. Определение коэффициента потерь тепла за счет теплопроводности

А.3.1. Коэффициент потерь тепла за счет теплопроводности спринклерного оросителя рассчитывают по формуле

Где - скорость воздушного потока на рабочем участке испытательного канала, м/с;

Температура воздуха на рабочем участке испытательного канала, °С.

А.3.2. Параметры, входящие в формулу (А.2), определяют при проведении испытаний спринклерных оросителей на тепловое воздействие воздушного потока с постоянной температурой при различных скоростях его движения, обеспечивающих срабатывание оросителя.

А.3.2.1. Подготовку к проведению испытаний осуществляют в соответствии с 2.2.1.

А.3.2.2. Испытания проводят путем внесения (за время не более 2 с) оросителя при стандартной его ориентации в рабочий участок испытательного канала при различных скоростях воздушного потока от (0,2 +/- 0,1) до (1,0 +/- 0,1) м/с с заданной температурой прокачиваемого воздуха, которую выбирают из таблицы А.1 в зависимости от номинальной температуры срабатывания оросителей.

А.3.2.2.1. В испытательном канале при установленной скорости прокачиваемого воздуха (0,2 +/- 0,1) м/с и температуре в соответствии с таблицей А.1 проводят три испытания, в которых измеряют время срабатывания оросителей с погрешностью не более 0,2 с. Если среднеарифметическое время срабатывания оросителей по результатам этих испытаний не превышает 600 с, то в качестве скорости при расчете по формуле (А.2) принимают установленное значение скорости воздушного потока.

А.3.2.2.2. Если среднеарифметическое время срабатывания оросителей, определенное в 3.2.2.1, превышает 600 с, то проводят серию испытаний при различных скоростях воздушного потока, указанных в 3.2.2. Результатом этих испытаний являются значения скоростей потока воздуха: - скорость воздуха, при которой время срабатывания оросителя составляет более 600 с, м/с; - скорость воздуха, при которой время срабатывания оросителя составляет не более 600 с, м/с. Итерационный процесс определения и прекращают при достижении условия

А.3.2.2.3. По формуле (А.2) рассчитывают коэффициент отдельно для значений и, удовлетворяющих выражению (А.3).

А.3.2.2.4. В качестве коэффициента оросителя принимают среднеарифметическое значение величин, рассчитанных в 3.2.2.3.

А.3.2.3. При испытаниях температуру окружающей среды в помещении измеряют с погрешностью не более 0,5 °С, а температуру воздушного потока - с погрешностью не более 1 °С.

А.3.2.4. При каждом испытании используют новый спринклерный ороситель; несработавший ороситель в дальнейшем не используют.

Приложение Б(справочное)

БИБЛИОГРАФИЯ

НПБ 68-98 Оросители водяные спринклерные для подвесных потолков. Огневые испытания

РД 50-690-89 Надежность в технике. Методы оценки показателей надежности по экспериментальным данным. Методические указания

Занятие № 4 .1 (лекция 7) «Установки водяного и пенного пожаротушения»

1.Назначение область применения и классификация водяных и пенных АУПТИстория возникновения установок пожаротушения неразрывно связана с развитием человеческого общества. Упоминания об устройствах для тушения пожара содержатся уже в древнейших летописях. Описания различных технических устройств пожаротушения встречаются в трудах Архимеда, греческого ученого-механика Ктесибия - изобретателя нагнетательного водоподъемного насоса (11-1 в.в. до н.э.), трактатах Герона Александрийского, Пифагора, римского архитектора Витрувия и др. В трудах Витрувия имеется описание насоса Ктесибия.

1769-1770 годы были ознаменованы созданием русским горным офицером К. Д. Фроловым проекта и действующего макета прототипа современной установки водяного пожаротушения. В описании проекта автор указывал, что его пожарная машина может быть использована в качестве водопроводной установки. Механизм ее был прост. Двигателем служило водоналивное колесо, приводящее в движение кривошипно-шатунный механизм. Последний жестко соединялся с поршнями двух всасывающих насосов, подававших воду в распределительную трубу, оборудованную перекрывными кранами. В случае пожара на концы стояков насаживались «кожаные рукава со шприцами» и открывался кран для подачи воды в очаг пожара. В чердачные помещения вода подавалась по стоякам. Внутри таких помещений размещались горизонтальные трубы с отверстиями для разбрызгивания воды по всему помещению. Однако, это изобретение не было применено на практике, а чертежи и описание установки похоронены в архивах.

В 1806 году англичанин Джон Кэри создает аналогичную установку и получает на нее патент. От конструкций Фролова и Кэри до целиком автоматизированной системы остается всего один шаг. И он был сделан в 1864 году англичанином Стюартом Гаррисоном, снабдившим установку оросителем, отдаленно напоминающим спринклер.

В 1874 г. американская фирма «Пармели и К°» разрабатывает конструкцию оросителя, получившую название спринклер (от английского «брызгать»).

Первые промышленные спринклерные установки представляли собой водопроводные системы с подключенными к ним спринклерными головками. Основной частью спринклеров был мостик из нескольких тонких металлических пластинок, спаянных между собой легкоплавким металлом с определенной температурой плавления. При повышении температуры окружающей среды легкоплавкий металл мостика расплавлялся и спринклер вскрывался. Прекратить разбрызгивание воды можно было закрытием крана водопроводной системы.

К спринклерным системам уже тогда предъявлялись жесткие требования: вода должна была равномерно и в достаточном количестве поступать на защищаемую площадь с одновременным орошением потол­ка; легкоплавкий замок спринклера должен был распадаться при опре­деленной температуре и не препятствовать освобождению пробки, закупоривающей его отверстие. Этим условиям в наибольшей степени отвечал спринклер «Гриннель», получивший широкое распространение в Америке, а затем и во всех промышленно-развитых странах.

В Англии за период с 1882 по 1904 годы спринклерные установки были размещены на 2,5 тыс. фабриках и заводах. Их производство осуществляло английское акционерное общество «Матер и Платт». В описании указывалось, что пожаротушитель употребляется в сочетании с водопроводными трубами, подключенными либо к городскому водопроводу, либо к специальному баку, устанавливаемому на определенной высоте над защищаемым помещением. По потолку проводят несколько параллельных рядов водопроводных труб на расстоянии друг от друга 2,5-3.0 м. На каждой трубе с интервалом 3,0-3,5 м устанавливаются спринклеры.

В России установка спринклеров «Гриннель» началась с 1891 года. Кроме спринклеров «Гриннель» в конце прошлого века применялись и другие образцы. Среди них был спринклер австрийца X. Линзера. Для защиты фабрик и заводов использовались также спринклеры Ньютона и А. Пашковского. Спринклеры русского изобретателя Пашковского по своей конструкции занимали среднее положение между спринклерами Гриннеля и Ньютона, с одной стороны, и спринклерами Линзера – с другой.

Применение автоматических установок водяного пожаротушения для защиты помещений внесло существенный вклад в дело борьбы с огнем. В 1904 году страховой деятель Бэтлей провел анализ всех пожаров на спринклерованных фабриках Англии. Из 810 пожаров 734 (91%) погашено спринклерами.

В этих устройствах видели надежную защиту от огня, и уже к 1895 году во всем мире насчитывалось свыше 3 млн. 250 тыс. спринклеров «Гриннель», под защитой которых находилось свыше 12 тысяч зданий с имуществом на сумму свыше 1 млрд. руб. по ценам того времени. Уже в начале XX века с помощью спринклерных установок в мире было предотвращено 15 тысяч пожаров.

Согласно СП 5.13130.2009 ГОСТ Р 50680-94 и ГОСТ Р 50800-95 водяное пожаротушение применяется в основном для ликвидации поверхностным способом пожаров классов А и В и используется для защиты различных складов, универмагов, помещений производства горючих натуральных и синтетических смол, пластмасс, резиновых технических изделий, кабельных каналов.

Иногда используется раствор воды со смачивателями для повышения ее проникающей (смачивающей) способности при тушении тлеющих материалов. В качестве добавок могут использоваться: водорастворимые полимеры («вязкая вода»); полиоксиэтилен («скользкая вода»); антифризы и соли.

Общая стоимость оборудования водяного пожаротушения высока, но, как правило, многое приобретается у местных поставщиков. Специализированное оборудование представлено зарубежными компаниями Viking и FIREMATICSprinklerDevices (США), GRINELL (Италия), ChangDer (Тайвань). В целом, вода – очень удачное средство тушения пожаров. Однако она не может применяться в качестве тушащего средства в ряде случаев: при горении электропроводки, при горении горючих и легко воспламеняющихся жидкостей, металлов и металлоорганических соединений, при тушении пожаров в местах, где сосредоточена дорогостоящая аппаратура.

При отработке второго учебного вопроса (15 мин) преподаватель доводит общие сведения о классификации и структуре построения автоматических установок пожаротушения.

1.2.Классификация и структура построения АУПТ

Классификация установок водяного и пенного пожаротушения

Автоматические установки водяного пожаротушения подразделяются, в соответствии с ГОСТ Р 50680-94 по конструктивному исполнению оросителя на спринклерные и дренчерные.

Спринклерные установки пожаротушения предназначены для локального тушения в помещениях распыленной водой или низкократной пеной. Свое название они получили от применяемого в них оросителя – спринклера от английского слова sprincle (брызгать, моросить).

Спринклер представляет из себя полуавтоматический кран для подачи ОТВ, который открывается при повышении температуры.

Дренчерные установки пожаротушения предназначены для обнаружения и тушения пожара по всей расчетной площади, а также для создания водяных завес. Свое название они получили от применяемого в них оросителя – дренчера от английского слова drench (мочить, орошать).

Необходимо помнить, что для запуска дренчерной установки необходима побудительная система.

Спринклерные установки по типу заполнения подводящего питательного и распределительного трубопроводов водой или воздухом на водозаполненные и воздушные.

Водозаполненными – для помещений с минимальной температурой воздуха 5 С и выше;

Воздушными–для неотапливаемых помещений зданий с минимальной температурой ниже 5 С.

Установки по времени срабатывания подразделяют на:

Ø быстродействующие – продолжительность срабатывания не более 3 с;

Ø среднеинерцнонные – продолжительное срабатывания не более 30;

Ø инерционные – продолжительность срабатывания свыше 30 с, но и более 180 с.

Ø средней продолжшельности действия – не более 30 мин;

Ø длительного действия – свыше 30 мин, но не более 60 мин.

Дренчерные установки по виду привода подразделяют на:

Ø электрические;

Ø гидравлические;

Ø пневматические;

Ø механические;

Ø комбинированные.

Установки пенного пожаротушения по конструктивному исполнению подразделяют, как и водяного, на спринклерные и дренчерные в зависимости от типа оросителей.

Дренчерные установки по виду привода так же подразделяют на электрические, гидравлические, пневматические, механические и комбинированные.

Установки пенного пожаротушения по времени срабатывания имеют аналогичные с водяными параметры быстродействия.

Установки по способу тушения подразделяют на:

Ø установки пожаротушения по площади;

Ø установки объемного пожаротушения.

Отличительными характеристиками классификации установок пенного пожаротушения от водяного являются параметры продолжительности действия и кратности пены.

По продолжительности действия установки подразделяют на:

Ø кратковременного действия – не более 10 мин;

Ø средней продолжительности – не более 15 мин;

Ø длительного действия – свыше 15 мин, но не более 25 мин.

Установки по кратности пены подразделяют на:

Ø установки пожаротушения пеной низкой кратности (от 5 до 20),

Ø установки пожаротушения пеной средней кратности (свыше 20, но не более 200);

Ø установки пожаротушения пеной высокой кратности (свыше 200).

В соответствии с ГОСТ 4.99-83 пенообразователи разделены на две классификационные группы в зависимости от применения:

Ø общего назначения;

Ø целевого назначения.

В зависимости от химического состава (поверхностно-активной основы) пенообразователи подразделяют (ГОСТ Р 50588 93) на:

Ø синтетические углеводородные

Ø синтетические фторсодержащие.

Кроме синтетических пенообразователей в ряде стран применяются также пенообразователи на протеиновой основе, в том числе содержащие фторированные поверхностно-активные вещества.

К пенообразователям общего назначения относятся: ПО-6К, ПО-ЗАИ, ПО-ЗНП, ТЭАС, ПО-6ТС. Они используются для получения огнетушащей пены и растворов смачивателей.

К пенообразователям целевого назначения относятся: САМПО, ПО-6ПП, ФОРЭТОЛ, «Универсальный», «Морской». Они используются для получения пены при тушении нефтепродуктов и горючих жидкостей Различных классов, пожаровзрывоопасных объектов, а также для применения с морской водой.

2. Принципиальная схема и принцип работы спринклерных АУПТ

Устройство водяной спринклерной установки пожаротушения представлено на рисунке 1.

Принцип работы спринклерной АУПТ рассмотрим на примере водяной спринклерной установки, защищаемое помещение №1.

Под перекрытием защищаемого помещения прокладывается распределительный трубопровод (2), заполненный водой под давлением на котором устанавливаются спринклеры (1). Под действием высокой температуры спринклеры открываются и вода орошает очаг пожара. Это не означает, что вскроются все спринклеры в защищаемом помещении. Вскрывается обычно несколько спринклеров непосредственно над очагом пожара.

Давление в питающем (3) трубопроводе падает. Открывается контрольно-пусковой узел (5). Вода под давлением создаваемым импульсным устройством (15) поступает через подводящий трубопровод (4) к спринклерам на тушение пожара.При открытии контрольно-пускового узла (5)срабатывают сигнализаторы давления (6), которые сигнализируют о срабатывании установки и начале тушения. Электрический сигнал от сигнализаторов давления (6) поступает на прибор приемно-контрольный пожарный (18), расположенный в станции пожаротушения и в помещении с персоналом, ведущим круглосуточное дежурство. Прибор управления пожарный (18) выдает команду на запуск электродвигателя (11) основного насоса (8). Насос выходит на рабочий режим и подает воду из противопожарного или производственного или хозяйственно-питьевого водопровода (12) к спринклерам. При выходе основного насоса на режим электроконтактный манометр (10) отключает резервный насос (9). Если основной насос не вышел на рабочий режим, то включается резервный насос (9).

Обратный клапан (13) не пускает воду обратно к импульсному устройству при выходе насоса на рабочий режим. Компрессор (16) служит для поддержания давления в импульсном устройстве (15), а следовательно и в распределительном трубопроводе (2). Вентиль (14) служит для заправки импульсного устройства водой. Для связи с помещением с персоналом, ведущим круглосуточное дежурство, в станции пожаротушения предусмотрен телефон (18). Для оповещения персонала в защищаемых помещениях о пожаре служит устройство оповещения о пожаре (19).

Рис.1. Водяная спринклерная АУПТ

1-спринклер; 2-распределительный трубопровод; 3-питающий трубопровод; 4-подводящий трубопровод; 5-контрольно-пусковой узел; 6-сигнализатор давления; 7-задвижка; 8-основной насос; 9-резервный насос; 10-электроконтактный манометр; 11-электродвигатель; 12-водопровод; 13-обратный клапан; 14-вентиль; 15-импульсное устройство; 16-компрессор; 17-дренажный насос; 18-прибор управления пожарный; 19-устройство оповещения о пожаре; 20-телефон.

Дренажный насос (17) служит для удаления избытков воды из помещения станции пожаротушения.

Работа установки прекращается остановкой электродвигателя с насосом и перекрытием задвижки в КПУ.

Если водопровод обеспечивает спринклерную установку по напору и расходу то наличие насосов и импульсного устройства не обязательно. Если недостаточно давления в трубопроводе, то предусматриваются основной и резервный насосы и импульсное устройство. Если недостаточно расхода воды, то предусматривается запасной резервуар с запасом воды на все время работы установки.

Питание установки (насосов и ППУ) должно быть обеспечено от двух независимых источников питания. Если установка имеет насос, включаемый вручную, то необходимо иметь автоматический водопитатель, обеспечивающий работу установки с расчетным расходом воды в течение 10 минут.

Спринклерная система с одной/двойной блокировкой использует дренчерный клапан с внешней установкой в исходное положение модели DV-5. Система срабатывает от потока жидкости, сухим способом или от датчиков пожарной сигнализации, как описано в описании на DV-5, а контроль спринклерной сети трубопроводов осуществляется посредством подготовительной арматуры, которая включает контрольный клапан модели CV-1FR (TD320). Предварительная заливка водой данной подготовительной арматуры не требуется.

Спринклерная система с одной/двойной блокировкой включает автоматические спринклерные оросители и дополнительную систему. Срабатывание системы автоматически приводит к вводу в действие (открытию) дренчерного клапана DV-5, который в свою очередь открывает поток воды в спринклерную сеть трубопроводов и обеспечивает ее вытекание через любые спринклерные оросители, которые могут быть открыты.

В соответствии с требованиями Национальной ассоциации противопожарной защиты в подготовительной системе, насчитывающей более 20 автоматических спринклеров, спринклерная сеть трубопроводов должна автоматически контролироваться на предмет определения целостности системы по поддержанию давления. В случае использования спринклерной системы с одной/двойной блокировкой контрольный клапан позволяет произвести проверку воздухом так, чтобы в систему автоматически нагнеталось проверочное давление воздуха или азота до 10 фунтов на квадратный дюйм (0,69 бар). В этом случае сигнализатор давления модели PS10-2A (устанавливаемый на срабатывание на понижение давления - 0,34 бара) используется в качестве определителя несанкционированных утечек в спринклерной сети трубопроводов.

Снижение давления воздуха в системе в результате разрушения теплового замка спринклера или разгерметизации труб не приводит к срабатыванию клапана DV-5, давление воздуха используется только для контрольных целей. В данную систему устанавливаются датчики пожарной сигнализации, которые реагируют на признаки пожара быстрее, чем автоматические спринклерные оросители. В этом случае система срабатывает с минимальной задержкой по подаче воды по сравнению с обычной спринклерной установкой пожаротушения, т.к. в систему вода начинает подаваться до того момента, когда срабатывают спринклерные оросители.

Система используется для определения повреждения сети трубопроводов, что может привести к нарушению подачи воды в случае пожара. Спринклерная система с одной/двойной блокировкой также применяется в тех случаях, когда существует серьезная опасность порчи под воздействием воды в результате повреждения спринклерных оросителей или трубопроводов. Обычно такое может быть в помещениях, где располагается компьютерная техника, на складах хранения ценных и дорогостоящих предметов, в библиотеках, архивах и в местах, подверженных замерзанию. Кроме того, спринклерные системы с одной/двойной блокировкой могут эффективно использоваться для защиты собственности в тех случаях, когда предварительная подача сигнала пожарной тревоги оставляет время на применение альтернативных средств тушения пожара до введения в действие спринклерной установки. Если же пожар не удается потушить другими средствами, спринклерная система с одной/двойной блокировкой вводит в действие спринклерную установку как основное средство пожаротушения. Сертифицированы UL, ULС, FM.Клапан DV-5Сертификат пожарной безопасности: № ССПБ.IL.УП001.В05990 (срок действия – до 01.03.2010).Сертификат соответствия: № РОСС IL.ББ02.В00817 (срок действия – до 01.03.2010).Клапан CV-1/CV-1FR
Сертификат пожарной безопасности: № ССПБ.CN.УП001.В05998 (срок действия – до 01.03.2010).Сертификат соответствия: № РОСС CN.ББ02.В00825 (срок действия – до 01.03.2010).Минимальное рабочее давление подачи воды - 1,4 бар, максимальное - 17,2 бар. Основными элементами спринклерной системы с одной/двойной блокировкой являются дренчерный клапан с внешней установкой в исходное положение модели DV-5, а также контрольный клапан модели CV-1FR (с фланцевым выходом) или модели F5201.

В зависимости от принятой формы первичной сигнализации клапан DV-5 может приводиться в действие от потока жидкости, сухим способом или от датчиков пожарной сигнализации.

Контрольный клапан CV-1FR устанавливается с обвязкой (см. рис. B-1 и B-2).

Требования к давлению воздуха в системе
Контрольное давление воздуха/азота должно быть равным 0,69±0,07 бар. Применение более высокого контрольного давления может привести к более длительной подаче воды, а применение более низкого - к несрабатыванию сигнализатора низкого давления (№17 на рис. B-1 и B-2), который выставляется на заводе на значение 0,34±0,07 бар при снижении давления.

Контрольное давление подачи воздуха (0,69±0,07 бар) может осуществляться одним из следующих способов:

· Автоматическая (автономная) установка подачи контрольного воздуха, модель G16AC812, описание TD126.

· Заводская подача сжатого воздуха максимум 200 фунтов/кв. дюйм (13,8 бар) в сочетании с устройством отбора воздуха, модель F324, описание в TD111.

· Баллон со сжатым азотом с максимальным давлением 3000 фунтов/кв. дюйм (206,9 бар) в сочетании с устройством отбора азота, модель F328, описание в TD113. (Подробное описание можно получить в ООО «Фирма Огнеборец».)

Номинальные потери давления в зависимости от характеристик потока для моделей CV-1FR и DV-5 приведены в описании на эти клапаны (обращаться в ООО «Фирма Огнеборец»).

Предохранительный клапан выставляется на заводе на полное открытие при давлении 1,72±0,14 бар, а начинает открываться с характерным треском при давлении 1,24 бар.

При монтаже спринклерных систем с одной/двойной блокировкой на Ду 40 - 150 мм (1½" - 6") в системе трубопроводов воды нет. В систему трубопроводов автоматически вводится воздух или азот при номинальном давлении 0,69 бар, и сигнализатор низкого давления PS10-2A производит контроль состояния низкого давления. Значительные потери давления (с расходом более того, которое может поддержать автоматическое устройство отбора) - обычно до значения ниже 0,34 бар - из-за нарушений в спринклерных оросителях или системе трубопроводов приводят к инициации тревожного сигнала, указывающего на необходимость ремонта спринклерной сети трубопроводов или самих спринклерных оросителей. Клапан DV-5 не открывается по причине стравливания контрольного воздуха.
В случае пожара система пожарной сигнализации, приводимая в действие потоком жидкости, сухим способом или от электрических датчиков, открывает клапан DV-5, который в свою очередь приводит в действие тревожные извещатели, срабатывающие под действием гидравлики. В последующем вода будет вытекать через те спринклерные оросители, которые находятся в открытом состоянии.

При отработке четвертого учебного вопроса (20 мин) преподаватель доводит информацию о дренчерных АУПТ.

3. Принципиальная схема и принцип работы дренчерных АУПТ.

Устройство пенной дренчерной установки пожаротушения представлено на рисунке 4.1.

Принципиальные отличия в устройстве установок пенного пожаротушения заключаются в следующем:

Отличие в устройстве пенного оросителя (5) от водяного (при получении пены низкой кратности) или присутствие пенного генератора вместо водяного оросителя (при получении пены средней кратности).

Присутствие бака для хранения пенообразователя (19).

Присутствие устройства для смешивания воды с пенообразователем и получения раствора пенообразователя с определенной концентрацией (20) (называется дозирующее устройство).

Автоматические установки пенного пожаротушения при объемном тушении пеной средней кратности должны обеспечивать пуск ОТВ с задержкой не менее 30 секунд (для эвакуации людей) и выдавать сигнал в виде надписи на светозвуковых табло «ПЕНА-УХОДИ» (14) внутри защищаемого помещения и «ПЕНА-НЕ ВХОДИТЬ» у входа в защищаемое помещение (13).


Занятие № 4.2 (лекция 8) «Назначение, устройство и принцип работы основных элементов водяных и пенных АУПТ»

1. Назначение, устройство и принцип работы спринклеров, дренчеров, генераторов

Оросители (спринклерные и дренчерные) предназначены для рас­пыления воды и распределения ее по защищаемой площади при тушении пожаров или их локализации, а также для создания водяных завес.

Дренчерные оросители применяются для разбрызгивания воды над защищаемой поверхностью в дренчерных установках пожаротушения.

Классификация, типы и основные параметры оросителей приведены в ГОСТ Р 51043-2002«Установки водяного и пенного пожаротушения автоматические. Оросители спринклерные и дренчерные. Общие технические требования. Методы испытаний».

Классификация и обозначение

Оросители подразделяют:

По наличию теплового замка или привода для срабатывания на:

Спринклерные (С);

Дренчерные (Д);

С управляемым приводом: электрическим (Э), гидравлическим (Г), пневматическим (П), пиротехническим (В);

Комбинированные (К).

По назначению на:

Общего назначения (О), в том числе предназначенные для подвесных потолков и стеновых панелей: углубленные (У), потайные (П), скрытые (К);

Предназначенные для завес (3);

Предназначенные для стеллажных складов (С);

Предназначенные для пневмо- и массопроводов (М);

Предназначенные для предупреждения взрывов (В);

Предназначенные для жилых домов (Ж);

Специального назначения (S).

По конструктивному исполнению на:

Розеточные (Р);

Центробежные (эвольвентные) (Ц);

Диафрагменные (каскадные) (Д);

Винтовые (В);

Щелевые (Щ);

Струйные (С);

Лопаточные (Л);

Прочие конструкции (П).

При акустическом распылении к букве, обозначающей конструктивное исполнение, добавляют нижний буквенный индекс “а”.

По виду используемого огнетушащего вещества (ОТВ):

На водяные (В);

Для водных растворов (Р), в том числе пенные (П);

На универсальные (У).

По форме и направленности потока огнетушащего вещества на:

Симметричные: концентричные, эллипсоидные (0);

Неконцентричные односторонней направленности (1);

Неконцентричные двусторонней направленности (2);

Прочие (3).

По капельной структуре потока ОТВ на:

Разбрызгиватели;

Распылители.

По виду теплового замка:

С плавким термочувствительным элементом (П);

С разрывным термочувствительным элементом (Р);

С упругим термочувствительным элементом (У);

С комбинированным тепловым замком (К).

По монтажному расположению на устанавливаемые:

Вертикально, поток ОТВ из корпуса направлен вверх (В);

Вертикально, поток ОТВ из корпуса направлен вниз (Н);

Вертикально, поток ОТВ из корпуса направлен вверх или вниз (универсальные) (У);

Горизонтально, поток ОТВ направлен вдоль оси распылителя (Г);

Вертикально, поток ОТВ из корпуса направлен вверх, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) (Г В);

Вертикально, поток ОТВ из корпуса направлен вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) (Г Н);

Вертикально, поток ОТВ из корпуса направлен вверх или вниз, а затем в сторону (вдоль направляющей лопатки или образующей корпуса оросителя) (универсальные) (Г У);

В любом пространственном положении (П).

По виду покрытия корпуса:

Без покрытия (о);

С декоративным покрытием (д);

С антикоррозионным покрьпием (а)

По способу создания диспергированного потока оросители подразделяют на:

Прямоструйные;

Ударного действия;

Завихренные.

× По конструктивному исполнению:

× ГПС (генераторы пены средней кратности);

× ГЧС, ГЧСМ (генераторы четырехструйные сеточные).

§ По производительности (только ГПС):

Рассмотрим устройство (рис. 1.) и принцип работы ГЧСМ.


Рис. 1. ГЧСМ (генератор четырехструйный сеточный)

Область применения

Оросители спринклерные производства фирмы CD применяются в водяных и водовоздушных спринклерных системах, а также в дренчерных системах.

Основные характеристики

Выпускаются оросители следующих типов (рис.1): с плоской розеткой – тип AHD204F* (68°С/57°С) – устанавливаются вертикально розеткой вниз; с вогнутой – тип AHD204A* (68°С/57°С) – устанавливаются вертикально вверх; универсальные – тип AHD204P* (68°С/57°С) – устанавливаются как розеткой вниз, так и розеткой вверх. Они представляют собой автоматические спринклеры колбового типа стандартного реагирования. Стеклянная колба диаметром 5 мм является тепловым замком. В зависимости от температуры срабатывания жидкость в колбе имеет определенный цвет: 68°С – красная, 57°С – оранжевая. Температура срабатывания выбирается в зависимости от категории защищаемого помещения. В случае удаления из оросителя термочувствительного элемента – колбы – он автоматически становится дренчерным.
*До 2008 года оросители на 57°С имели маркировку AHD157P и AHD157A(F). Сейчас она сохраняется только как заводской номер продукта.

Оросители этих типов предназначены для открытой установки под потолком (оросители общего назначения), а также для углубленной установки в случае использования фасонного цоколя (кроме универсальных оросителей, их установка в фасонный цоколь запрещена).
Конструктивное исполнение оросителей – розеточное.

Возможно использование со следующими видами огнетушащего вещества – вода, водные растворы, пена. Кратность пены – 13,2%, концентрация – 3%, тип пенообразователя – AFFF.

По направленности потока огнетушащего вещества оросители относятся к концентрическим. Все оросители производят распыл полусферической формы.

Оросители поставляются без покрытия (бронза) и с покрытием (хром или белый) – модели для установки головой вниз. Температура окружающей среды: минимальная – -30°С, максимальная – +38°С.

Срок службы оросителей при комнатной температуре – 30 лет.

Область применения

Оросители дренчерные для водяной завесы производства фирмы CD применяются в дренчерных системах.

Основные характеристики

Дренчерный ороситель типа 3ABECA (рис.1) устанавливается горизонтально и предназначен для создания водяной завесы.
Конструктивное исполнение оросителя – лопаточное. Выходное отверстие круглое.
Возможно использование со следующими видами огнетушащего вещества – вода, водные растворы.
По направленности потока огнетушащего вещества оросители относятся к оросителям с односторонней направленностью. Направление водяного потока – вертикальное.
Оросители поставляются без покрытия (бронза). Также возможны варианты покрытий по спецзаказу.
Срок службы оросителей – не ограничен.

При отработке втрого учебного вопроса (25 мин) преподаватель доводит общие сведения о контрольно-пусковых узлах спринклерных АУПТ.

2.Контрольно-пусковые узлы спринклерных АУПТ, их устройство и работа

КПУ (контрольно-пусковые узлы) предназначены для пуска АУПТ, сигнализации о пуске, остановки АУПТ, контроля за работоспособностью, заправки АУПТ огнетушащим веществом, проведения ТО и ремонтных работ. КПУ является составной частью узла управления.

Узел управления: Совокупность устройств (трубопроводной арматуры, запорных и сигнальных устройств, ускорителей их срабатывания, устройств, снижающих вероятность ложных срабатываний, измерительных приборов и прочих устройств), которые расположены между подводящим и питающим трубопроводами спринклерных и дренчерных установок водяного и пенного пожаротушения, предназначенных для контроля состояния и проверки работоспособности указанных установок в процессе эксплуатации, а также для пуска огнетушащего вещества, выдачи сигнала для формирования командного импульса на управление элементами пожарной автоматики (насосами, системой оповещения, отключением вентиляторов и технологического оборудования и др.).

Классификация и обозначение узлов управления

Узлы управления подразделяют:
По виду на:
- спринклерные (С);
- дренчерные (Д).

По среде заполнения питающего и распределительных трубопроводов на:
- водозаполненные (В);
- воздушные (Вз).
Примечание - В обозначении дренчерных сигнальных клапанов среду заполнения питающего и распределительного трубопроводов не указывают.

По виду привода дренчерного или универсального сигнального клапана на:
- гидравлические (Г);
- пневматические (П);
- электрические (Э);
- ручные (Р);
- механические (М);
- комбинированные (различные сочетания двух букв Г, П, Э, М или Р).
Примечание - После обозначения вида привода указывают соответственно:
- для электрического привода и его различных комбинаций – номинальное напряжение питания
в вольтах, например (Э24), (Э220М);
- для пневматического и гидравлического привода – минимальное рабочее давление в
мегапаскалях, например (Г 0,05).
По рабочему положению на трубопроводе относительно горизонтальной плоскости на:
- вертикальные (В);
- горизонтальные (Г);
- универсальные (У).
Примечание – Для универсальных УУ – не менее чем в двух пространственных положениях.

По типу соединения с трубопроводом и/или арматурой на:
- фланцевые (Ф);
- муфтовые (М);
- штуцерные (Ш);
- хомутовые (X);
- комбинированные (различные сочетания двух букв Ф, М, Ш или X).
Примечание – При двухбуквенном обозначении первая буква означает входное соединение, вторая – выходное
соединение.

Примеры условных обозначений: узел управления УУ – С 100/1, 2В-ВФ. У4 – “Гранат”;спринклерного УУ с проходом условным диаметром 100 мм, максимальным рабочим давлением 1,2 МПа, для водозаполненного питающего трубопровода, с вертикальным рабочим положением на трубопроводе, фланцевым типом соединения с арматурой, климатическим исполнением У, категорией размещения 4, условным наименованием “Гранат”.

Узел управления УУ–Д 150/1,6(ГЭ24)Вз– ГФХ.У4 – “КБГМ-А”.

дренчерного УУ с проходом условным диаметром 150 мм, максимальным рабочим давлением 1,6 МПа, комбинированным гидравлическим и электрическим приводами на номинальное напряжение 24 В, для воздушного питающего трубопровода, с горизонтальным рабочим положением на трубопроводе, фланце-хомутовым типом соединения с арматурой (ФХ), климатическим исполнением У, категорией размещения 4, условным наименованием “КБГМ-А”.

Оборудование водяного пожаротушения.

Сигнально-пусковые клапана КС100(150)/1В-ВФ.04, тип "ALARM VALVE",
модель G (Ду100, 150) с обвязкой и оповещателем "WATER MOTOR GONG".

Сигнальные клапаны модели G 4 и 6 дюймов фланцевого типа состоят из бронзовой заслонки клапана с торцевой резиновой накладкой, расположенной на бронзовом седле, имеющем замковое соединение. Седло луженное, благодаря чему предотвращается прилипание резиновой накладки заслонки клапана к седлу. Внешняя обводящая линия позволяет в случае образования скачков давления со стороны водопровода обходить заслонку сигнального клапана и создавать в спринклерной системе избыточное давление системы, предотвращающее открывание заслонки клапана. Когда резкий скачок давления со стороны водопровода сдвигает заслонку клапана с седла, вода будет течь в замедляющую камеру.

Замедляющая камера модели Е соединена с сигнальным трубопроводом между седлом сигнального клапана, оборудованным замковым соединением, и сигнальными устройствами типа размыкающего и замыкающего устройств, шлейфа и гидрозвонка. Специальное входное от­верстие и сливные отверстия позволяют производить слив из замедляющей камеры со скоростью, которая будет достаточной для предотвращения ложных срабатываний.

Сигнальные клапаны модели G разрешены к применению при установке в вертикальном положении.

Технические характеристики:

Клапан водосигнальный модели AV-1 (F200) (20,7 бар - 300 psi) представляет собой сборную конструкцию, состоящую из стыковочного кольца, заслонки с резиновой оболочкой и корпуса водосигнального клапана, предназначенную для использования в спринклерных установках пожаротушения с заполнением водой трубопровода автоматических спринклерных оросителей. Этот клапан предназначен для автоматического включения электрических и/или гидравлических противопожарных устройств при наличии устойчивого притока воды в систему, эквивалентного по объему расходу воды, потребляемой одним или несколькими спринклерами.
Фланцевые соединения клапанов, поставляемых в Россию, соответствуют стандарту DIN (PN 10/16), который используется на территории страны. Производителем также выпускаются фланцевые соединения для стандартов ANSI, AS, ISO (международный стандарт) и JIS (японский промышленный стандарт).
Типовая схема установки демонстрирует основные узлы клапана, установленного вертикально, с закрытой дренажной линией, включая обвязку и замедляющую камеру модели RС-1 (F211). Также на рисунке изображен сигнализатор давления, который устанавливается после замедляющей камеры. В обвязку входит главный дренажный клапан 50 мм х 15 мм, используемый в странах Восточной Европы, где требуется, чтобы тестирующий клапан размером 15 мм был подсоединен к системе параллельно с основным водосигнальным клапаном (рис. H1 - вертикальная установка для Ду 100-150, рис. H2 - вертикальная установка для Ду 200 PN16, рис. H3 - горизонтальная установка для Ду 100-150, рис. H4 - горизонтальная установка дляДу 200 PN16, рис. H5 - вертикальная установка для Ду 65). Стальные ниппели и арматура, используемые в этой обвязке, предназначенной специально для вертикальной установки клапана, поставляются оцинкованными в соответствии со стандартом.
Обвязка клапана AV-1 (F200) включает также перепускной обратный клапан, который снижает риск ложной тревоги, позволяя медленным и незначительным перепадам давления подаваемой воды свободно переходить в систему и удерживаться в своих самых больших значениях без открытия заслонки.
Замедляющая камера модели RC-1 (F211) необходима в установках, которые подвергаются перепадам давления, характерным, например, для водопроводной системы, чтобы предотвратить ложную тревогу. Замедляющая камера не требуется в установках с относительно постоянным давлением воды.

Клапанымодели AV-1 (F200) сертифицированы Underwriters Laboratories Inc. (UL), Underwriters Laboratories Inc. Of Canada, Factory Mutual Research Corporation (FM), а также во Всероссийском научно-исследовательском институте противопожарной обороны МВД России.
Сертификат пожарной безопасности: № ССПБ.CN.ОП014.В.01158 (срок действия 28.02.2008 - 27.02.2011).
Сертификат соответствия: № РОСС CN.СЗ13.В70311 (срок действия 04.04.2008 - 03.04.2011).

Клапан водосигнальный модели AV-1 (F200) на 65, 100, 150 и 200 мм, а также обвязка к нему рассчитаны на использование при минимальном рабочем давлении 1,4 бар и максимальном рабочем давлении 20,7 бар. Он применяется только в автоматических установках пожаротушения с заполненным водой трубопроводом, поэтому минимальная температура, при которой он может использоваться, не должна быть ниже 4°С. Серийный заводской номер и год изготовления выбиты на крышке лючка. Составные части клапана показаны на.
Корпус клапана выполнен из чугуна. Наружная поверхность покрыта красной краской. Прокладка крышки лючка выполнена из полихлоропреновой резины толщиной 1,6 мм, болты с шестигранными головками для крышки лючка - из стали по стандарту ASTM A307.
Стыковочное кольцо, изготовленное из бронзы по стандарту ASTM В62 и запрессованное в корпус, имеет центрально расположенную канавку, сообщающуюся с камерой клапана, расположенной над стыковочным кольцом, которая сообщается с водосигнальной линией. Канавка стыковочного кольца уплотняется изнутри и снаружи, когда заслонка закрыта. Если же заслонка открывается, вода немедленно начинает поступать к гидрозвонку и/или сигнализатору давления. Узел заслонки состоит из заслонки, выполненной из чугуна, оболочки заслонки из резины EPDM, шайбы-заслонки из нержавеющей стали и самоконтрящегося болта с шестигранной головкой типа 18-8. Шарнирный болт также выполнен из нержавеющей стали, а пружина кручения - из нержавеющей стальной проволоки. Шарнирный болт удерживается в двух втулках из закаленной бронзы, которые впрессованы в корпус клапана с двух сторон заслонки. Аналогичная пара втулок впрессована в рычаги заслонки для того, чтобы снизить трение вращения.
Замедляющая камера модели RC-1 (F211) изготовлена из чугуна и покрашена снаружи в красный цвет. Сверху камеры имеется соединительное гнездо для тройника ¾" x ½" x ¾" для подсоединения электрических и/или гидравлических сигнализаций.
Узел ограничителя, который располагается ниже замедляющей камеры (в системах с переменным давлением), поставляется полностью собранным на заводе. Он состоит из входного ограничителя и дренажного ограничителя, смонтированных на тройнике. Диаметры отверстий ограничителей и объем замедляющей камеры выбираются в таком сочетании, чтобы обеспечить оптимальное время до выдачи сигнала тревоги после открытия заслонки в соответствии со всеми требованиями противопожарных органов. В дополнение к функции контроля за временем наполнения замедляющей камеры входной ограничитель снижает остаточное давление на входе гидравлической сирены и уменьшает износ колокола сирены. Для этой же цели входной ограничитель оставлен и в системах с постоянным давлением. Устанавливаемая снаружи в обход заслонки перепускная труба позволяет незначительным повышениям давления воды свободно переходить в систему и удерживаться в своих самых больших значениях без открытия заслонки. Сопротивление потоку, оказываемое трубопроводом перепускного обратного клапана и разница давлений для открытия заслонки определяют минимальный поток жидкости, необходимый для срабатывания сигнализатора давления (т.е. поток в перепускном участке, необходимый для открытия заслонки).
Сочетание этих параметров подбирается так, чтобы заслонка открывалась, когда в спринклерную систему подается поток, эквивалентный объему жидкости, используемой одним или несколькими спринклерными оросителями. Когда заслонка открывается, динамический эффект воды, протекающей через стыковочное кольцо, удерживает заслонку в открытом положении при меньшем потоке, чем требуемый для первичного открывания заслонки. Эта дополнительная чувствительность способствует поддержанию установившегося режима подачи воды в спринклерную систему и постоянного сигнала тревоги во время проверки системы сигнализации или когда работает спринклерный ороситель.
Номинальные значения потерь давления в барах в зависимости от расхода воды в литрах в минуту для водосигнальных клапанов модели AV-1 (F200) показаны на. Примерные потери на трение, основанные на формуле Хейзен-Уильямса и выраженные в эквиваленте длины трубы 40 при С = 120, составляют порядка 6,7 метра.

Основной вариант компоновки водосигнального клапана AV-1 (F200) показан на (вертикальная установка для Ду 100-150), (вертикальная установка для Ду 200 PN16), (горизонтальная установка для Ду 100-150), (горизонтальная установка для Ду 200 PN16), (вертикальная установка для Ду 65). Ниппели, применяемые в различных вариантах устройства арматуры, выполнены из стали, а их резьба выполнена в соответствии с требованиями стандарта ANSI B1.20.1. Фитинги изготавливаются либо из ковкого чугуна по ANSI B16.3, либо из чугуна ANSI B16.4.
Тревожный клапан управления является шаровым клапаном с поворотом на ¼ оборота. Он изготавливается из коррозионно устойчивых медных сплавов с уплотнениями из стеклосодержащего политетрафторэтилена. Корпус главного дренажного клапана 50 мм х 15 мм, изготовленный из бронзы, имеет 3 положения ("выключен", "дренаж" и "проверка") и представляет собой шаровой клапан, изолированный ПТФЭ, имеющий армированные пластиком внутренние входные и выходные соединения с армированной пластиком параллельной резьбой. Обратные перепускной и дренажный клапаны имеют бронзовые корпуса, уплотнения выполнены в форме дисков из нитриловой резины.
Как входной, так и дренажный ограничители изготавливаются из латуни. Отверстие дренажного ограничителя защищено от попадания ржавчины или накипи, которые могут образоваться на стенках замедляющей камеры, посредством установки фильтра из сетки, изготовленной из нержавеющей стальной проволоки с размером ячеек 24. Кроме того, отверстия входного и дренажного ограничителей защищены от попадания загрязняющих веществ при подаче воды У-образным фильтром на ½", установленным в линии, ведущей к сигнальному извещателю. Фильтр, корпус которого выполнен из бронзы, снабжен сеткой из стальной нержавеющей проволоки с размером ячеек 50. Сетку можно периодически вынимать для очистки.
Манометр подачи и манометр системы выполнены из коррозионно-устойчивых материалов, имеют сдвоенную шкалу 0 - 20 с указанием, что " х 1" равно бару и " х 100" - кПа. Трехходовые контрольные клапаны манометров имеют корпус из бронзы, перемещающийся шток с графитовым герметиком, рабочую часть "металл-металл".
При конструировании системы следует обратить внимание на необходимость слива больших количеств воды, что может потребоваться при дренаже или при проведении проверки системы водой.
Когда установка пожаротушения впервые заполняется водой под давлением, вода течет в систему до тех пор, пока давление подачи воды не сравняется с давлением воды в системе. В этот момент пружина закрутки закрывает заслонку потока. После выравнивания давлений водосигнальный клапан готов к использованию и тревожный клапан управления должен быть открыт.
Для систем с переменным давлением медленные и небольшие повышения давления могут наблюдаться в системе (через перепускной обратный клапан), при этом заслонка остается закрытой. Переходный пик давления при подаче воды может быть достаточно значительным, чтобы однократно открыть заслонку потока, но при этом ложного срабатывания водосигнальной сигнализации не происходит, т.к. часть повышенного давления абсорбируется системой, тем самым снижая вероятность повторного открытия заслонки. Вода, попавшая в сигнальную линию, автоматически сливается, что еще дополнительно снижает вероятность ложной тревоги от последующих переходных перепадов давления.
Когда в сеть спринклерных трубопроводов поступает постоянный поток воды, либо в результате проверочных испытаний, либо работы спринклерного оросителя, или в связи со стабильным увеличением давления подачи (достаточным для открытия заслонки потока), срабатывает гидравлическая сирена или сигнализатор давления. Эти сигнализации действуют до тех пор, пока остается открытой заслонка. Их можно выключить, закрыв тревожный клапан управления. Вода в сигнальных линиях автоматически сливается через дренажное отверстие диаметром 3,2 мм в узле ограничителя, когда закрывается сигнальный клапан управления или когда закрывается заслонка потока (в результате прекращения поступления воды в сеть автоматических спринклерных оросителей).
После срабатывания клапан AV-1 (F200) не нуждается в повторной установке в исходное положение. Однако если тревожную сигнализацию принудительно отключали во время работы, то сигнальный клапан управления должен быть повторно открыт после того, как установка пожаротушения будет вновь приведена в рабочее положение.
Тестирующий клапан может быть использован для проверки действия сирены и/или сигнализатора давления без постоянного притока воды в систему спринклерных оросителей. В открытом положении тестирующий клапан обеспечивает подачу воды к трубопроводу сигнализаций.
Установщик спринклерной системы должен помнить, что конфигурация системы трубопровода может повлиять на эффективность работы водосигнальной системы. Хотя небольшое наличие воздуха в трубопроводе необходимо для предотвращения значительного повышения давления, связанного с расширением воды при нагреве, большое количество воздуха в системе может привести к прерыванию сигнала тревоги. Смягчающий эффект воздушной "подушки" и связанная с этим вероятность открытия заслонки в результате всплеска давления хорошо известны с момента появления спринклерных систем с заполненным водопроводом. Менее изучено влияние воздушных "подушек" на непрерывность сигнала тревоги, передаваемого водосигнальными клапанами, после открытия тестирующего клапана или после включения спринклера.
Вероятность прерывания сигнала связана с тем, что поток воды из системы через линию, ведущую к тестирующему клапану, или спринклер очень мал по сравнению с потоком, который может быть пропущен через клапан, и, конечно же, эта разница увеличивается в зависимости от увеличения размера клапана. Если в системе отсутствует воздух, приток воды в систему будет равен потоку на выходе из системы и заслонка потока в открытом положении обеспечит устойчивую подачу воды. Однако при наличии воздуха в системе заслонка поначалу открывается шире, чем обычно, т.к. система поначалу требует большего притока воды - до тех пор, пока есть пузырьки воздуха, и только после того, как полностью исчезнут пузырьки воздуха, зазор заслонки уменьшится. Если объем воздуха значителен, поток в систему может моментально уменьшиться почти до нуля (после того как закончится компрессия) и заслонка может закрыться, перекрыв доступ воды к сигнализациям.
Как только заслонка закрылась, значительное количество воды должно уйти из системы, прежде чем заслонка снова откроется.
Используя продувочное отверстие (которое может также служить в качестве конечного звена для соединения с испытательной линией) и наполняя систему медленно в соответствии с инструкциями, приведенными в разделе "Порядок работы", можно предотвратить образование воздушных "подушек".

Размеры в дюймах (мм) для 2½"

При отработке третьего учебного вопроса (20 мин) преподаватель доводит информацию о дозаторах и способах дозирования.

Основной преподаватель осуществляет контроль за работой курсантов, задавая контрольные вопросы по изучаемому материалу, и отвечает на возникающие вопросы в ходе работы, задает наводящие вопросы, заставляющие курсантов обратить внимание на те или иные упущения, недостатки, ошибки и т.д. Оказывает курсантам необходимую методическую помощь. На основании проведенного опроса и контроля работы курсантов преподаватель предварительно их оценивает.

3. Дозаторы и способы дозирования

Дозирование – введение пенообразователя в воду для получения водного раствора пенообразователя определенной концентрации.

В настоящее время применяют пять способов дозирования:

1. Объемное дозирование

При этом способе пенообразователь заранее готовится в баке. Недостатки: срок хранения уменьшается, необходимо строить большой резервуар для активного раствора, сложности при утилизации ПО).

2. Дозирование с применением бака-дозатора.

3. Дозирование с помощью автоматического дозатора с трубой Вентури.

4. Дозирование при помощи насосов дозаторов.

5. Дозирование путем эжектирования пенообразователя.

Пример дозатора, принцип действия которого основан на эжектировании пенообразователя приведен на рис 3.



Рис. 3. Дозатор

1-входной патрубок; 2-всасывающая камера; 3-сопло; 4-выходной патрубок.

В заключительной части (10 мин) основной преподаватель подводит итоги занятия. По результатам работы курсантов и проведенного опроса определяет степень усвоения материала и выставляет оценки в журнал учета учебных занятий.

Ставит задачу дежурному собрать непроверенные работы, и литературу, выдаёт курсантам задание на самостоятельную работу и самостоятельную подготовку.

Рис. 4.1. Пенная дренчерная АУПТ

1 – прибор управления пожарный; 2 – телефон; 3 – спринклер; 4 – побудительный трубопровод; 5 – ороситель пенный дренчерный; 6 – распределительный трубопровод; 7 – питающий трубопровод; 8 – трос; 9 – легкоплавкий замок; 10 – клапан побудительный тросовый; 11 – генератор пены средней кратности; 12 – автоматический пожарный извещатель; 13 – светозвуковое табло «Пена-не входить»; 14 – светозвуковое табло «Пена-уходи»; 15 – cигнализатор давления; 16 – контрольно-пусковой узел; 17 – электромагнитный вентиль; 18 – задвижка; 19 – бак с пенообразователем; 20 – дозирующая шайба; 21 – обратный клапан; 22 – вентиль; 23 – основной насос; 24 – электродвигатель; 25 – резервный насос; 26 – электроконтактный манометр; 27 – импульсное устройство; 28 – компрессор; 29 – дренажный насос; 30 – водопровод.

Принцип работы (на примере дренчерной установки с электропускомзащищаемое помещение №4).

При пожаре в защищаемом помещении №4 срабатывает не менее 2 пожарных извещателей и сигнал о пожаре поступает на прибор управления пожарный (1). По команде от ППУ срабатывает электромагнитный вентиль (17), давление в КПУ (16) падает и он открывается.

Дальнейшая работа пенной дренчерной установки пожаротушения с электропуском полностью аналогична работе водяной спринклерной установки пожаротушения.


Похожая информация.


ГОСТ Р 53288-2009

Группа Г88

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Установки водяного и пенного пожаротушения автоматические

МОДУЛЬНЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ ТОНКОРАСПЫЛЕННОЙ ВОДОЙ АВТОМАТИЧЕСКИЕ

Общие технические требования. Методы испытаний

Automatic water and foam extinguishers systems. Automatic fire water mist spray extinguishers systems. Modules. General technical requirements. Test methods


ОКС 13.220.10
ОКП 48 5487

Дата введения 2010-01-01
с правом досрочного применения*
________________
* См. ярлык "Примечания"

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН ФГУ ВНИИПО МЧС России

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 274 "Пожарная безопасность"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 февраля 2009 г. N 63-ст

4 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на модульные установки пожаротушения тонкораспыленной водой (МУПТВ) или иными жидкими огнетушащими веществами (ОТВ), предназначенные для тушения пожаров и применяемые на территории Российской Федерации.

Настоящий стандарт не распространяется на МУПТВ, предназначенные для защиты транспортных средств, а также сооружений, проектируемых по специальным нормам.

Настоящий стандарт устанавливает типы, общие технические требования и методы испытаний МУПТВ.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51043-2002 Установки водяного и пенного пожаротушения автоматические. Оросители. Общие технические требования. Методы испытаний

ГОСТ Р 51105-97 Топлива для двигателей внутреннего сгорания Неэтилированный бензин. Технические условия

ГОСТ 9.014-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.104-79 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы условий эксплуатации

ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 9.302-88 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 9.308-85 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний

ГОСТ 9.311-87 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Метод оценки коррозионных поражений

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.2.037-78 Система стандартов безопасности труда. Техника пожарная. Требования безопасности

ГОСТ 12.2.047-86 Система стандартов безопасности труда. Пожарная техника. Термины и определения

ГОСТ 12.4.026-76 * Система стандартов безопасности труда. Цвета сигнальные и знаки безопасности
______________
ГОСТ Р 12.4.026-2001

ГОСТ 15.201-2000 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство

ГОСТ 356-80 Арматура и детали трубопроводов. Давления условные, пробные и рабочие. Ряды

ГОСТ 2405-88 Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия

ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8486-86 . Пиломатериалы хвойных пород. Технические условия

ГОСТ 8510-86 Уголки стальные горячекатаные неравнополочные. Сортамент

ГОСТ 9569-79 * Бумага парафинированная. Технические условия
______________
* На территории Российской Федерации действует ГОСТ 9569-2006 , здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 19433-88 Грузы опасные. Классификация и маркировка

ГОСТ 21130-75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 23852-79 Покрытия лакокрасочные. Общие требования к выбору по декоративным свойствам

ГОСТ 25828-83 Гептан нормальный эталонный. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 12.2.047 , а также следующие термины с соответствующими определениями:

3.1 водопитатель МУПТВ: Устройство, обеспечивающее работу установки с расчетным расходом и давлением воды и/или водного раствора, указанными в технической документации (ТД), в течение установленного времени.

3.2 запорно-пусковое устройство; ЗПУ: Запорное устройство, устанавливаемое на сосуде (баллоне) и обеспечивающее выпуск из него огнетушащего вещества.

3.3 инерционность МУПТВ: Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону.

3.4 малоинерционная МУПТВ: Установка с инерционностью не более 3 с.

3.5 модуль: Устройство, в корпусе которого совмещены функции хранения и подачи ОТВ при воздействии пускового импульса на привод модуля.

3.6 модульная установка пожаротушения тонкораспыленной водой; МУПТВ: Установка, состоящая из одного или нескольких модулей, объединенных единой системой обнаружения пожара и приведения их в действие, способных самостоятельно выполнять функцию пожаротушения и размещенных в защищаемом помещении или рядом с ним.

3.7 МУПТВ кратковременного действия: Установка со временем подачи ОТВ от 1 до 60 с.

3.8 МУПТВ непрерывного действия: Установка с непрерывной подачей ОТВ в течение времени действия, определенного в ТД.

3.9 МУПТВ циклического действия: Установка, подающая ОТВ по многократному циклу подача-пауза.

3.10 ороситель: Устройство, предназначенное для тушения, локализации или блокирования пожара путем распыливания воды и/или водных растворов.

3.11 огнетушащая способность: Способность МУПТВ обеспечивать тушение модельных очагов пожара определенных классов и рангов.

3.12 продолжительность действия: Время с момента начала выхода ТРВ из оросителя до момента окончания подачи.

3.13 рабочее давление : Давление вытесняющего газа в сосуде с ОТВ, возникающее при нормальном протекании рабочего процесса.

3.14 расход огнетушащего вещества: Объем воды, подаваемой МУПТВ в единицу времени.

3.15 среднеинерционная МУПТВ: Установка с инерционностью от 3 до 180 с.

3.16 тонкораспыленный поток огнетушащего вещества: Капельный поток огнетушащего вещества со среднеарифметическим диаметром капель не более 150 мкм.

3.17 установка водяного комбинированного пожаротушения: Установка, в которой в качестве огнетушащего вещества используется вода или вода с добавками в комбинации с различными огнетушащими газовыми составами.

3.18 установка поверхностного пожаротушения тонкораспыленной водой: Установка, обеспечивающая тушение горящей поверхности защищаемого помещения (сооружения).

4 Классификация

Общая классификация установок пожаротушения тонкораспыленной водой приведена в таблице 1.


Таблица 1 - Общая классификация установок пожаротушения тонкораспыленной водой

Классификационный признак

Характеристика

Вид огнетушащего вещества

Вода. Вода с добавками. Газоводяная смесь. Жидкие ОТВ

Инерционность срабатывания

Малоинерционные. Среднеинерционные

Продолжительность действия

Кратковременное. Продолжительное

Тип действия

Непрерывное. Циклическое

Вид водопитателя

Сжатый газ. Сжиженный газ. Газогенератор. Насос. Комбинированный


Обозначение МУПТВ должно иметь следующую структуру:

МУПТВ - XXX - X - XX - ТД,
(1) (2) (3) (4) (5)

где 1 - наименование изделия;

2 - объем огнетушащего вещества, заправляемого в МУПТВ, дм;

3 - тип МУПТВ по водопитателю (сжатый газ (сжиженный газ) - Г, газогенератор - ГЗ, комбинированный - К);

4 - вид огнетушащего вещества (вода - В, вода с добавками - ВД, жидкие ОТВ - Ж, газоводяная смесь - ГВ, газожидкостная смесь - ГЖ);

5 - обозначение технической документации, в соответствии с которой изготовлена установка, или фирма-изготовитель.

Пример условного обозначения:

МУПТВ - 250 - Г - ГВ - ТУ... - модульная установка пожаротушения тонкораспыленной водой с объемом ОТВ 250 дм, тип по водопитателю - сжатый газ (сжиженный газ), ОТВ - газоводяная смесь, изготовленная в соответствии с ТУ.

5 Общие технические требования

5.1 МУПТВ должны соответствовать требованиям , ГОСТ 12.2.037 , настоящего стандарта и ТД, утвержденной в установленном порядке.

5.2 МУПТВ закачного типа должны иметь манометр или индикатор давления с рабочим диапазоном, выбранным с учетом соотношения температура - давление. Нулевое значение, номинальное значение (или минимальное и максимальное) и значение рабочего давления, установленные в ТД на МУПТВ, должны быть указаны на шкале индикатора давления отметками с цифрами. Участок шкалы в диапазоне рабочего давления должен быть окрашен в зеленый цвет, участок в диапазоне пониженного давления - в красный цвет, участок в диапазоне повышенного давления - в красный или иной (кроме зеленого) цвет.

Участки шкалы манометра можно выделять также путем нанесения линии, полосы или сектора различного цвета.

Допускаемая основная погрешность манометра во всем диапазоне шкалы должна соответствовать требованию ГОСТ 2405 .

Максимальная допускаемая основная погрешность индикатора давления не должна превышать 4%.

Конструкция МУПТВ должна обеспечивать возможность удаления измерительных устройств для их поверки.

5.3 МУПТВ должна быть оборудована:

- устройством слива, при необходимости, ОТВ из емкостей и трубопроводов;

- устройством контроля уровня или объема ОТВ в емкостях для их хранения;

- штуцером для присоединения манометра или индикатора давления (для МУПТВ закачного типа);

- предохранительным устройством.

5.4 Устройства пуска установки должны быть защищены от случайных срабатываний.

5.5 Запорные устройства (краны) должны быть снабжены указателями (стрелками) направления потока жидкости и/или надписями "ОТКР" и "ЗАКР".

5.6 Оросители, используемые в МУПТВ, должны быть стойкими к коррозионному и тепловому воздействию и выдерживать в течение не менее 10 мин нагрев при температуре 250 °С. Оросители, изготовленные из коррозионно-нестойких материалов, должны иметь защитные и защитно-декоративные покрытия в соответствии с ГОСТ 9.301 , ГОСТ 9.303 .

5.7 МУПТВ должны быть работоспособны в диапазоне температур окружающей среды, установленной изготовителем и указанной в ТД.

5.8 Сосуды, работающие под давлением, должны быть снабжены устройствами, предохраняющими от превышения давления, срабатывающими в диапазоне давлений

где - максимальное допустимое значение рабочего давления, создаваемое при максимальной температуре эксплуатации устройства, устанавливается изготовителем и указывается в технической документации на устройство;

- давление срабатывания предохранительного устройства;

- давление пробное (ГОСТ 356).

Не допускается использовать в качестве предохранительного устройства запорно-пусковую систему.

5.9 Сосуды, работающие под давлением, должны сохранять прочность при пробном испытательном давлении в соответствии с требованиями .

5.10 МУПТВ должны быть герметичными. Для МУПТВ закачного типа потери давления в баллоне модуля (в баллоне с газом-вытеснителем) не должны превышать 5% от начального в течение года.

5.11 Усилие приведения в действие установки при ручном пуске:

- одним пальцем руки - не более 100 Н;

- кистью руки - не более 200 Н.

5.12 Параметры сигналов автоматического пуска должны соответствовать требованиям ТД на соответствующие изделия.

5.13 Инерционность срабатывания МУПТВ при автоматическом пуске не должна превышать величину, указанную в ТД на изделие.

5.14 Ресурс срабатываний МУПТВ должен быть не менее 5.

5.15 Значения расхода воды и газа через ороситель (оросители) не должны отличаться от установленных в ТД.

5.16 Продолжительность действия установки не должна отличаться от установленной в ТД.

5.17 МУПТВ должны обеспечивать тушение модельных очагов пожара классов А и/или В на всей площади, заявляемой в ТД.

5.18 МУПТВ должны быть стойкими к наружному и внутреннему коррозионному воздействию в течение всего срока службы в соответствии с ТД. Металлические детали из коррозионно-нестойких материалов должны иметь защитные и защитно-декоративные покрытия в соответствии с требованиями ГОСТ 9.301 и ГОСТ 9.303 .

Лакокрасочные покрытия должны быть выполнены в соответствии с требованиями ГОСТ 9.032 , ГОСТ 9.104 , ГОСТ 23852 и должны сохранять свои защитные и декоративные свойства в течение всего назначенного срока службы.

Наружная поверхность корпуса МУПТВ должна быть окрашена в красный цвет в соответствии с ГОСТ 12.4.026 . Допускается, по требованию заказчика, окраска в тон интерьера.

5.19 При использовании в качестве ОТВ водных растворов, склонных к расслоению при длительном хранении, в МУПТВ должны быть предусмотрены устройства, обеспечивающие их перемешивание.

5.20 В МУПТВ для вытеснения ОТВ допускается использование газогенерирующих элементов. Конструкция газогенерирующего элемента должна быть герметичной и исключать возможность попадания в ОТВ каких-либо его фрагментов или шлаков.

5.21 Канал выпуска МУПТВ, как правило, оборудуется до входа в самое узкое проходное сечение канала фильтрующими элементами, размер ячейки которых должен быть меньше минимального сечения канала истечения. Общая площадь проходного сечения фильтра должна более чем в пять раз превышать площадь минимального сечения канала истечения.

6 Требования безопасности и охраны окружающей среды

6.1 К работе с установкой должны допускаться лица, прошедшие специальный инструктаж и обучение безопасным методам труда, проверку знаний правил безопасности и инструкций в соответствии с занимаемой должностью применительно к выполняемой работе согласно ГОСТ 12.0.004 .

6.2 Электрооборудование установок должно быть заземлено. Знак и место заземления - по ГОСТ 21130 .

6.3 При проведении огневых испытаний операторы должны иметь средства защиты органов дыхания, глаз, кожного покрова. Необходимо наличие первичных средств пожаротушения (огнетушители, песок, вода и т.д.). Огневые камеры должны быть изготовлены из негорючих материалов и оборудованы вентиляцией.

6.4 Запрещается:

- эксплуатировать МУПТВ с манометром или индикатором давления, имеющими механические дефекты;

- выполнять любые ремонтные работы при наличии давления в корпусе МУПТВ.

6.5 При эксплуатации, техническом обслуживании, испытаниях, ремонте должны обеспечиваться требования охраны окружающей среды, изложенные в ТД на МУПТВ.

6.6 Добавки к воде (поверхностно-активные вещества) должны иметь гигиеническое заключение.

6.7 Около места проведения испытаний или ремонтных работ МУПТВ должны быть установлены предупреждающие знаки, например "Осторожно! Прочие опасности" и поясняющая надпись "Идут испытания" - по ГОСТ 12.4.026 , а также вывешены инструкция и правила безопасности.

7 Маркировка

7.1 Маркировка МУПТВ должна быть выполнена на русском языке и содержать следующие данные:

- наименование или товарный знак предприятия-изготовителя;

- условное обозначение МУПТВ;

- обозначение нормативного или технического документа, которому соответствует МУПТВ (технические условия, стандарт и т.д.);

- классы очагов пожаров (в виде пиктограмм), которые могут быть потушены данным МУПТВ;

- масса незаправленной МУПТВ;

- вид и объем (масса) ОТВ, находящегося в МУПТВ (при поставке с ОТВ);

- рабочее давление в баллонах при температуре (20±2) °С;

- диапазон температур эксплуатации;

- предостерегающие надписи, например: "Предохранять от воздействия осадков, прямых солнечных лучей и нагревательных приборов";

- рекомендации по периодическим проверкам с указанием частоты проверки;

- заводской номер;

- месяц и год изготовления.

7.2 Маркировку следует выполнять любым способом, обеспечивающим четкость и сохранность в течение всего срока службы МУПТВ.

7.3 На баллоне модуля должны быть указаны его паспортные данные в соответствии с ТД на него.

8 Правила приемки

8.1 Для контроля соответствия МУПТВ требованиям настоящего стандарта, "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением", технической документации проводят приемочные, квалификационные, приемо-сдаточные, периодические, типовые испытания и испытания на надежность.

8.2 Приемочные и квалификационные испытания МУПТВ проводят в соответствии с ГОСТ 15.201 по программе, разработанной изготовителем и разработчиком.

8.3 Приемо-сдаточные испытания проводят в целях принятия решения о пригодности МУПТВ к поставке потребителю. Испытания проводятся службой технического контроля (контроля качества) предприятия-изготовителя по программе, разработанной изготовителем и разработчиком.

8.4 Периодические испытания проводят не реже одного раза в три года на образцах, прошедших приемо-сдаточные испытания, в целях контроля стабильности технологического процесса и качества продукции.

8.5 Типовые испытания проводят при внесении изменений в конструкцию или технологию изготовления (материал и т.п.), способных повлиять на основные параметры, обеспечивающие работоспособность МУПТВ. Программу испытаний составляют с учетом этих изменений и согласуют с разработчиком.

8.6 Испытания на надежность проводят не реже одного раза в три года.

8.7 Объем, виды и порядок испытаний представлены в таблице 2.


Таблица 2 - Объем приемо-сдаточных и периодических испытаний

Показатели

Пункт (раздел) настоящего стандарта

Виды испытаний

Приемо-
сдаточные

Перио-
дические

Наличие маркировки, упаковки и комплектации

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2009

Достаточно отметить разнообразие порошковых смесей, включающих массу активных компонентов, подавляющих воспламенения. И все же самым доступным в плане организации и по цене остается пожаротушение водяное, которое органично дополняет и современные средства доставки материала к источнику огня.

Особенности воды как средства борьбы с огнем

Главное преимущество воды в контексте устранения источников возгорания является экологическая чистота, относительно высокая эффективность и, как следствие, универсальность. Данный ресурс используется на объектах производства, в общественных зданиях и в частном секторе. Впрочем, и водяное, и пенное пожаротушение не рекомендуется применять в борьбе с огнем, если есть опасность повреждения материальных ценностей и электрооборудования. Здесь уже имеет отрицательное значение свойство воды как электропроводника. К тому же использование воды невозможно при низких температурах - например, в зимнее время или в условиях производств, работающих при отрицательной температуре.

Что касается способности этого материала тушить огонь, то эффективность борьбы обуславливается процессом снижения температуры очага благодаря теплоемкости воды. Кроме того, подобные системы пожаротушения способствуют прекращению опасных химических реакций, сопровождающих горение.

Конструкции установок водного пожаротушения

Для осуществления функции подачи воды практически все системы используют насосные станции с повышенным давлением, которые работают за счет электродвигателей. В целях повышения надежности на предприятиях используются и резервные насосы, устанавливаемые на единой платформе с основным агрегатом. Для выполнения задачи орошения применяются распылительные модули. Они могут иметь разную конфигурацию размещения, размеры, частоту подачи и т. д.

В новейших установках применяются модули, позволяющие работать с Кроме этого, пожаротушение водяное предполагает наличие в технической инфраструктуре распределительных устройств. Это промежуточный модуль, связывающий водопроводную сеть и каналы, по которым происходит подача материала на отдельные оросительные устройства. Для организации надежной водопроводной инфраструктуры используются компоненты из нержавеющих сталей, ориентированных на эксплуатацию в условиях высоких температурных нагрузок. Использование пластиковых материалов из популярного в сантехнике поливинилхлорида, к примеру, в данном случае исключается.

Спринклерное водяное пожаротушение

Системы такого типа базируются на водопроводных сетях, постоянно заполненных водой под оптимальным давлением. Техническая инфраструктура чаще всего размещается в верхней части помещений - например, под крышами или в подпотолочной нише. Для снабжения каналов выделяется отдельная водопроводная линия. Непосредственно подачу воды на целевой участок осуществляют спринклеры, то есть орошающие разбрызгиватели.

Выпускающие устройства оснащаются специальными насадками, которые под действием высоких температур плавятся, освобождая проход для воды. В современных модификациях спринклерные установки водяного пожаротушения осуществляют не прямую подачу, а капельную. Причем фракция капель настолько мелкая, что в процессе работы формируется водяной туман, заволакивающий пространство помещения. Данное решение как раз вызвано стремлением минимизировать ущерб непосредственно от воды для имущества, которое находится в обслуживаемой зоне.

Устройство дренчерных систем

Дренчерные установки внешне могут напоминать предыдущий вариант системы пожаротушения, но у него есть несколько принципиальных отличий. Во-первых, насадки дренчеров не рассчитаны на самоустранение под воздействием огня. Они не сгорают и не плавятся и, напротив, изготавливаются из материалов с термозащитой. Во-вторых, активация функции тушения, то есть сам процесс орошения начинается только после подачи сигнала от пожарных датчиков или после ручного запуска с операторского пульта. Это могут быть установки водяного и пенного пожаротушения, которые в обычном режиме ожидания не заполняются рабочим материалом. Подача той же воды в каналы доставки к распылителям начинается только после соответствующей команды на тушение. Поэтому и головки оросителей открыты всегда.

Обычно дренчерные системы используют на промышленных предприятиях для охвата конкретных зон. Существует и конфигурация точечного распыления для пограничных участков, защита которых ставит целью препятствование дальнейшему распространению огня.

Создание проекта системы пожаротушения

Разработка проектного решения основывается на нескольких факторах эксплуатации системы. В первую очередь формируется схема трубопровода, который обеспечит возможность поддержания достаточного давления при тушении водой в условиях конкретного объекта. Рассчитывается диаметр труб, конфигурация их укладки, способ соединения и т.д. Далее рассчитывают оптимальные параметры силового оборудования.

Главным силовым агрегатом будет насос. Его мощность оценивается исходя из потребностей конкретного помещения в охвате распылителями. Дело в том, что проектирование водяного пожаротушения должно учитывать и возможную интенсивность возгорания - чем выше угрозы, тем большее количество распылителей должно присутствовать в помещении. Соответственно, выводится совокупная потребность в силовом потенциале насоса. На основе полученных в ходе проектирования данных уже исполнители начинают монтажные мероприятия.

Монтаж систем пожаротушения

Процесс установки оборудования состоит из трех основных этапов. На первой стадии выполняется прокладка водопроводной сети, по которой будет осуществляться подача воды. Трубы монтируются с учетом больших нагрузок и возможности поддержания высокого давления. Сложность этого мероприятия заключается в том, что каналы подачи воды должны располагаться в верхней части помещения. Поэтому изначально и проект помещения должен предусматривать специальную нишу для коммуникаций. На втором этапе монтаж водяного пожаротушения требует подключения насосной станции. Она будет устанавливаться в месте забора воды или подключения трубопровода к подающей центральной сети.

Для насоса желательно предусмотреть небольшую платформу, которая сможет обеспечить стабильность его положения. Если агрегат электрический, то следует предусмотреть и доступ к розетке. На заключительном этапе выполняется установка распыляющих устройств - спринклеров или дренчеров. Они интегрируются в потолочную нишу посредством специальной фурнитуры и подключаются к подведенным каналам водопроводной линии пожаротушения.

Аксессуары для распылителей

Производители систем пожаротушения регулярно совершенствуют устройства распыления воды, предлагая технологичную фурнитуру. При разработке проекта системы пожаротушения будет не лишним продумать системы крепления оросителей для более надежной эксплуатации. В частности, специалисты рекомендуют применять для этого сгибаемые концевики, выполненные из гофрированных нержавеющих труб. Такое решение специально предназначено для интеграции тех же спринклеров в конструкции подвесных потолков. Также для обеспечения долговечности пожаротушение водяное рекомендуется защищать от случайных механических воздействий. Для этого можно использовать небольшие металлические решетки, каркасы и даже маскирующие колпаки. Но важно иметь в виду, что при запуске системы такие приспособления должны моментально откидываться.

Автоматика в системах пожаротушения

И дренчерные, и могут быть автоматизированными. Это значит, что система будет управляться без участия оператора. Реализуются автоматические системы тушения при помощи контроллеров и датчиков - базовый набор современных пожарных сигнализаций. Что касается контроллера, то в круг его задач входит отправка сигнала о начале тушения на модуль, открывающий клапаны поступления воды на форсунки распыления, извещение ответственного лица о пожаре и запуск насосной станции. Не обходится автоматическое водяное пожаротушение и без датчиков. Это устройства, которые непосредственно фиксируют факт возгорания, передавая соответствующий сигнал на контроллер.

Автоматическое пенное пожаротушение предполагает практически мгновенную ликвидацию очага возгорания. При этом все этапы процесса – от обнаружения возгорания до сброса огнегасящей среды – происходят без участия человека, под контролем автоматики.

А в качестве средства борьбы с огнем используется пена – коллоидная система, состоящая из заполненных инертным или углекислым газом пузырьков.

Поэтому для реализации данного процесса нам необходима особая установка пенного пожаротушения – генерирующее коллоидную среду устройство, дополненное сетью пожарных датчиков. И в данной статье мы рассмотрим подобные установки, разбирая как общее устройство систем автоматического пенного пожаротушения, так и технические характеристики реальных моделей.

Системы пенного пожаротушения – общее устройство и типовые разновидности

По сути – это обычная система пожаротушения, конструкция которой дополнена пенообразователем – генератором, трансформирующим жидкость в жидко-воздушную коллоидную среду.

То есть в конструкцию такой системы пожаротушения входят следующие элементы:

  • Распылители дренчеры или спринклеры. Первые заливают пеной все вокруг, работая «по площадям», вторые – гасят пожар в локальной точке. Поэтому в формате одной системы можно встретить как дренчерные, так и спринклерные форсунки.
  • Трубопроводы для подачи воды и пены – это обычная арматура, по которой транспортируют воду к пенообразователю и готовую пену к распылителю.
  • Генераторы пены – установки, производящие средство пожаротушения – пену – на основе углеводородов или содержащих фтор компонентов. При этом самой важной частью генератора является дозатор, вводящий пенообразующее вещество в воду.
  • Сеть противопожарных датчиков, к которым относятся устройства контроля температуры, инфракрасного излучения и задымления в защищаемой зоне.
  • Пульт управления – стандартный узел для пенного или водяного пожаротушения, обрабатывающий сигналы от сети датчиков и направляющий команды на заслонки или вентили, врезанные в трубопроводы.

В итоге классификацию систем пенного пожаротушения в большинстве случаев выстраивают на основе типа дозатора и кратности (соотношения жидкой и газовой фракций в конечном продукте) пены.

И по первому признаку установки делятся на:

По второму признаку установки делятся на:


При этом эффективность установки зависит от кратности пены напрямую – чем выше, тем лучше.

Однако высосократные генераторы стоят дороже низкократных аналогов. Поэтому их применение должно быть оправдано с экономической точки зрения. Ведь с локальными возгораниями можно справиться и с помощью низкократной установки, а иные пожары очень сложно «залить» даже с помощью высокократной установки, увеличивающий объемы жидкой фракции средства пожаротушения в сотни раз.

Достоинства и недостатки пенного пожаротушения

Как видите: установки водяного и пенного пожаротушения, по большому счету, устроены сходным образом. Однако пенные генераторы обладают рядом достоинств, наделяющих данную систему преимуществом перед тривиальными установками водяного пожаротушения.

К неоспоримым преимуществам систем пенного пожаротушения можно отнести:

  • Способность генератора пены «увеличить» объемы подаваемой жидкости на два порядка и более. В итоге пенное пожаротушение не требует большого объема жидкости.
  • Ориентацию системы как на локальные, так и на крупные пожары. С помощью пены можно не просто залить всю площадь защищаемого участка – она дает возможность заполнить весь объем корпуса, шкафа, комнаты, цеха или строения.
  • Высокую поверхностную активность пены – это средство пожаротушения может «течь» даже по горящей поверхности. Поэтому пенное пожаротушение можно использовать даже во время пожара на складе горюче-смазочных материалов. Кроме того, такие установки могут тушить спирты и прочие летучие среды.
  • Экологическую безопасность – пеной можно потушить пожар даже без эвакуации людей из помещения. Она способна вызвать лишь легкую аллергическую реакцию, которая проявляется лишь у немногих людей.

Ну а недостатки пенных систем тушения пожаров практически не отличаются от «минусов» водных установок. Ведь основой средства пожаротушения в том и другом случае выступает именно вода. Поэтому пеной нельзя тушить работающие электроприборы, а сама система монтируется очень сложно и нуждается в трудоемком периодическом обслуживании. Кроме того, пена может причинить ущерб как хранимым товарно-материальным ценностям, так и всему строению, защищаемому с помощью такой системы пожаротушения.

Обзор моделей генераторов пены

Автоматические установки пенного пожаротушения и компоненты к ним выпускаются как отечественными, так и зарубежными производителями. Причем «сердцем» любой установки является генератор. Ведь производительность и эффективность установки зависит именно от этого узла.

и стационарных систем пенного пожаротушения. Подключается к напорной трубе (давление до 0,6 МПа) и производит около 600 литров пены с секунду, расходуя всего 5-6 литров пенообразующего вещества. Кратность получаемой пены – средняя – от 80 до 100 единиц. Напор пены, изливаемой из раструба генератора-насадки – до 10 метров. Может использоваться в качестве средства объемного пожаротушения.

Стоимость – от 6000 рублей.

ГПСС 2000 – генератор стационарного типа , производящие высокократное средство пожаротушения (100-130 единиц). Подключается к напорной трубе под давлением до 0,2 МПа и генерирует пену в объемах, достаточных для тушения пожаров с большой площадью возгорания. Генератор расходует 21 литров пенообразующего средства в секунду, производя 2000 литров пены.

Стоимость устройства – от 8000 рублей.

ГВПЭ «Фаворит» — генератор эжекционного типа , производящий газовые взвеси воздушно-механическим способом. Такая установка генерирует пену из 6-процентного раствора поверхностно-активных веществ (ПАВ). Конструктивной особенностью данного агрегата является малогабаритный корпус, «сжимаемый» либо по ширине, либо по высоте. Сфера применения – склады и нефтеперерабатывающие заводы.

Стоимость изделия зависит от габаритов и производительности генератора.

ГВПЭ «Фаворит» — генератор эжекционного типа

КНП 5/10 «Афрос» – генератор (камера) низкократной пены , «взбивающий» 6-процентный раствор фторосодержащих ПАВ. Струя пены подается вертикально с давлением 0,2-0,7 МПа. Камера подключается к водопроводу с давлением от 0,8 МПа и генерирует пену, потребляя не менее 5 литров пенообразователя в секунду. Максимальный расход – 10 литров раствора в секунду. Соответственно объемы генерируемого средства пожаротушения доходят до 500-1000 литров в секунду. Генератор КНП можно использовать в установках пенного пожаротушения, ориентированных на защиту нефтеперерабатывающих заводов. Кратность пены – не менее 4 единиц.