Слайд 2

Централизованная система теплоснабжения

Слайд 3

Централизованное теплоснабжение характеризуется наличием обширной разветвлённой абонентской теплосети с запитыванием многочисленных теплоприемников (заводы, предприятия, здания, квартиры, жилые помещения и т.д.)

Основными источниками для централизованного теплоснабжения являются: теплоэлектроцентрали (ТЭЦ), которые также попутно вырабатывают и электроэнергию; котельные (водогрейные и паровые).

Слайд 4

Структура централизованного теплоснабжения

Центральная система отопления в составе включает несколько элементов: Источник носителя тепла. Это тепловая электрическая централь, которая занимается производством тепла и электроэнергии. Источник транспортирования тепла – тепловые сети. Источник потребления тепла. Это отопительные приборы, размещенные в домах, офисах, на складах и в других помещениях различных видов.

Слайд 5

Схемы системы теплоснабжения

Зависимая схема системы отопления– система центрального отопления предназначена для работы на перегретой воде. Стоимость ее ниже стоимости независимой схемы, благодаря исключению таких элементов, как теплообменники, расширительный бак и подпиточный насос, функции которых выполняются централизованно на тепловой станции. Перегретая вода из магистральной внешней теплосети смешивается с обратной водой (t=70-750С) внутридомовой системы отопления и в результате вода необходимой температуры, подается в отопительные приборы. При таком подключении внутридомовые тепловые пункты, как правило, оснащаются смесительными установками (элеваторами). Недостатком зависимой схемы присоединения со смешением является незащищенность системы от повышения в ней гидростатического давления, непосредственно передающе­гося через обратный теплопровод, до значения, опасного для целостности отопительных приборов и арматуры.

Слайд 6

Слайд 7

Независимая схема системы отопления(теплообменник) – перегретая вода из котла подается в теплообменник. Теплообменник(водонагреватель) - это устройство, в котором нагрев холодной воды до нужной температуры и предназначенной для отопления здания, происходит за счет перегретой воды котельной.Независимую схему присоединения применяют, когда в системе не допускается повыше­ние гидростатического давления. Преимуществом независимой схемы, кроме обеспечения теплогидравлического режима, индивидуального для каждого здания, является возможность сохранения циркуляции с использованием теплосодержания воды в течение некоторого времени, обычно достаточ­ного для устранения аварийного повреждения наружных теплопроводов. Система отопле­ния при независимой схеме служит дольше, чем система с местной котельной, вследствие уменьшения коррозионной активности воды.

Слайд 8

Слайд 9

Виды подключений:

Однотрубные системы отопления многоквартирных домов в силу своей экономии имеют множество недостатков, и главным из них является большая теплопотеря по ходу следования. То есть, вода в таком контуре подаётся снизу вверх, в каждой квартире попадая в радиаторы и отдавая тепло, ведь охлаждённая в приборе вода возвращается в ту же трубу. К конечному пункту теплоноситель доходит уже изрядно остывшим.

Слайд 10

Слайд 11

Схема подключения радиаторов однотрубной системы отопления

  • Слайд 12

    Двухтрубная система отопления в многоквартирном доме может быть открытой и закрытой, но она позволяет сохранять теплоноситель в оном температурном режиме для радиаторов любого уровня. В двухтрубном контуре отопления остывшая вода из радиатора уже не возвращается в ту же трубу, а отводится в возвратный канал или в «обратку». Причём, совершенно не имеет значения, подключен ли радиатор со стояка или с лежака – главное, что температура теплоносителя остаётся неизменной на всём пути его следования по трубе подачи. Немаловажным преимуществом в двухтрубном контуре является тот факт, что вы можете регулировать отдельно каждую батарею и даже установить на ней краны с термостатом для автоматического поддержания температурного режима. Также в таком контуре вы можете использовать приборы с боковым и нижним подключением, использовать тупиковое и попутное движение теплоносителя.

    Слайд 13

    Схема подключения радиаторов двухтрубной системы отопления

  • Слайд 14

    Преимущества централизованного теплоснабжения:

    вывод взрывоопасного технологического оборудования из жилых домов; точечная концентрация вредных выбросов на источниках, где с ними можно эффективно бороться; Возможность использовать дешевое топливо, работа на разных видах топлива, включая местное, мусоре, а также возобновляемых энергоресурсах; возможность замещать простое сжигание топлива (при температуре 1500-2000 °С для подогрева воздуха до 20 °С) тепловыми отходами производственных циклов, в первую очередь теплового цикла производства электроэнергии на ТЭЦ; относительно гораздо более высокий электрический КПД крупных ТЭЦ и тепловой КПД крупных котельных работающих на твердом топливе. Простота в использовании. Вам не нужно следить за оборудованием – радиаторы центрального отопления всегда выдают стабильную температуру (вне зависимости от погодных условий

    Слайд 15

    Недостатки централизованного теплоснабжения:

    Огромное количество потребителей тепла, которые имеют свой режим теплоснабжения, что практически полностью исключает возможность регулирования теплоподачи; Удельная стоимость системы ЦТ, которая в свою очередь зависит от плотности нагрузки Завышение стоимости тепла в некоторых городах; Сложный, дорогой, забюрократизированный порядок подключения к ЦТ; Отсутствие возможности регулирования объемов потребления; Невозможность жителям самостоятельно регулировать включение и отключение отопления; Длительный срок летних отключений ГВС. Тепловые сети в большинстве городов изношены, тепловые потери в них превышают нормативные.

    Слайд 16

    Децентрализованная система теплоснабжения

  • Слайд 17

    Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует.

    Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы Децентрализованное отопление отличается от централизованного отопления локальным распределением производимого тепла

    Слайд 18

    Основные виды децентрализованного отопления

    Электрическое Прямое Аккумуляционное Теплонасосное Печное Малые котельные

    Слайд 19

    Печное Малая котельная

    Слайд 20

    Виды систем с вовлечением нетрадиционной энергетики:

    теплоснабжение на базе тепловых насосов; теплоснабжение на базе автономных водяных теплогенераторов.

    Слайд 21

    ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ОТОПЛЕНИЯ могут размещаться

    В скважинных коллекторах, которые устанавливаются вертикально в грунт на глубину до 100 м В подземных горизонтальных коллекторах

    Слайд 22

    Принцип действия

    Тепловая энергия поступает на теплообменник, нагревая теплоноситель (воду) системы отопления. Отдавая тепло, хладагент остывает, и с помощью расширительного клапана вновь переводится в жидкое состояние. Цикл замыкается. Для «извлечения» тепла из земли используется хладагент - газ с низкой температурой кипения. Хладагент в жидком состоянии проходит по системе труб, закопанных в землю. Температура земли на глубине более 1,5 метров одинакова летом и зимой и равна 8 градусам. Такой температуры хватает, чтобы проходящий в земле хладагент "закипел" и перешел в газообразное состояние. Этот газ всасывается компрессорным насосом, в этот момент происходит его сжатие и выделение тепла. Тоже самое происходит когда велосипедным насосом накачивают шину – от резкого сжатия воздуха насос становится теплым.

    Слайд 23

    Автономные водяные теплогенераторы

    Бестопливныетеплогенераторы основаны на принципе кавитации. Электричество в этом случае нужно для работы электродвигателя насоса, а накипь не образовывается вовсе. Кавитационные процессы в теплоносителе возникают в результате механического воздействия на жидкость в замкнутом объеме, что неизбежно приводит к ее нагреву. Современные установки имеют в контуре кавитатор, т.е. нагрев жидкости осуществляется за счет многократной циркуляции по контуру «насос – кавитатор – емкость (радиатор) – насос». Включением в схему установки кавитатора удается увеличить срок службы насоса благодаря переносу кавитационных процессов из рабочей камеры насоса в полость кавитатора. Кроме того данный узел является основным источником нагрева, поскольку именно в нем происходит преобразование кинетической энергии движущейся жидкости в тепловую.

    Слайд 24

    Основной насос Кавитатор Циркуляционный насос Клапан электромагнитный Вентиль Расширительный бак Радиатор отопления

    Слайд 25

    Другие технологии энергосбережения

    Индивидуальные системы отопления Конвекторное отопление (газовые воздухонагреватели, включающие горелку, теплообменник и вентилятор) Газо-лучистое отопление («светлые» и «темные» инфракрасные обогреватели)

    Слайд 26

    Наиболее распространенная схема автономного (децентрализованного) теплоснабжения включает в себя: одноконтурный или двухконтурный котел, циркуляционные насосы для отопления и горячего водоснабжения, обратные клапаны, закрытые расширительные баки, предохранительные клапаны. При одноконтурном котле для приготовления горячего водоснабжения применяется емкостной или пластинчатый теплообменник.

    Слайд 27

    Поквартирное отопление

    Поквартирное отопление - децентрализованное (автономное) индивидуальное обеспечение отдельной квартиры в многоквартирном доме теплом и горячей водой

    Слайд 28

    Двухконтурные настенные котлы обеспечивают, наряду с отоплением, приготовление горячей воды для бытовых нужд. Благодаря малым габаритам, ненамного превышающим размеры обычной газовой колонки, для котла нетрудно найти место в любом помещении, даже специально не приспособленном под котельную: на кухне, в коридоре, прихожей и т.д. Индивидуальные системы отопления позволяют полностью решить проблему экономии газового топлива, при этом каждый житель, используя возможности установленного оборудования, создает себе комфортные условия проживания. Внедрение системы поквартирного отопления сразу исключает проблему учета тепла: учитывается не тепло, а только расход газа. В стоимости же газа отражаются составляющие тепла и горячей воды.

    Слайд 29

    Воздушное отоплении и вентиляция

  • Слайд 30

    Газо-лучистое отопление

    Для организации лучистого отопления в верхней части помещения (под потолком) размещаются инфракрасные излучатели, обогреваемые изнутри продуктами сгорания газа. При применении СГЛО тепло передается от излучателей непосредственно в рабочую зону тепловым инфракрасным излучением. Подобно солнечным лучам, оно практически целиком доходит до рабочей зоны, обогревая персонал, поверхность рабочих мест, пола, стен. А уже от этих теплых поверхностей происходит нагрев воздуха в помещении. Главным результатом лучистого инфракрасного отопления является возможность значительного снижения средней температуры воздуха в помещении без ухудшения условий труда. Средняя температура в помещении может быть снижена на 7оС, обеспечивая только за счет этого экономию до 45% по сравнению с традиционными конвектными системами.

    Слайд 31

    Преимущества децентрализованной системы теплоснабжения:

    снижение потерь тепла из-за отсутствия внешних тепловых сетей, сведение к минимуму потерь сетевой воды, снижение затрат на водоподготовку; отсутствие необходимости землеотводов под тепловые сети и котельные; полная автоматизация, в том числе и режимов теплопотребления (не нужен контроль температуры обратной сетевой воды, теплопроизводительности источника и т.д.); гибкость в управлении заданной температурой непосредственно в рабочей зоне; прямые затраты на отопление и эксплуатационные расходы на содержание системы ниже; экономичность в расходовании тепла.

    Слайд 32

    Недостатки децентрализованной системы теплоснабжения:

    Халатность пользователей. Любая система требует периодического профилактического осмотра и обслуживания Проблема дымоудаления. Необходимость создания качественной вентиляционной системы и отрицательное воздействие на окружающую среду. Снижение эффективности работы системы из-за неотапливаемых соседних помещений. При поквартирном теплоснабжении в многоэтажном здании необходимо организационно-техническое решение вопроса отопления лестничных клеток и других мест общественного пользованияотсутствие внятного собственника, т.к. котельная является коллективной собственностью жителей; Не начисление амортизации и длительной срок сбора средств на необходимые крупные ремонты; Отсутствие системы быстрой поставки запасных частей.

    Санитарно-технические устройства зданий, входя-щие в систему местного теплоснабжения. К таким устройствам можно отнести автономные котельные и теплогенераторы теп-ловой мощностью от 3-20 кВт до 3000 кВт (включая крышные и блочные - мобильные), и индивидуальные квартирные теп-логенераторы. Данное оборудование предназначено для теп-лоснабжения отдельного объекта (иногда небольшой группы рядом расположенных объектов) или индивидуальной кварти-ры, коттеджа.

    Особенности проектирования и сооружения автономных котельных для различных типов гражданских объектов регла-ментированы сводом правил СП 41-104-2000 «Проектирова-ние автономных источников теплоснабжения».

    По размещению их в пространстве автономные котельные подразделяют на отдельно стоящие, пристроенные к зданиям другого назначения, встроенные в здания другого назначения независимо от этажа размещения, крышные. Тепловая мощ-ность встроенной, пристроенной и крышной котельной не должна превышать потребности в теплоте того здания, для теп-лоснабжения которого она предназначена. Но общая тепловая мощность автономной котельной не должна превышать: 3,0 МВт для крышной и встроенной котельной с котлами на жидком и газообразном топливе; 1,5 МВт для встроенной ко-тельной с котлами на твердом топливе.

    Не допускается проектирование крышных, встроенных и пристроенных котельных к зданиям детских дошкольных и школьных учреждений, к лечебным корпусам больниц и поли-клиник с круглосуточным пребыванием больных, к спальным корпусам санаториев и учреждений отдыха.

    Возможность установки крышной котельной на зданиях любого назначения выше отметки 26,5 м должна согласовы-ваться с местными органами Государственной противопожар-ной службы.

    Схема с автономными источниками теплоснабжения работа-ет следующим образом. Нагретая в котле вода (первичный кон-тур) поступает в подогреватели, где нагревает воду вторичного контура, поступающую в системы отопления, вентиляции, кон-диционирования и ГВС, и возвращается в котел. В этой схеме контур циркуляции воды в котлах гидравлически изолирован от контуров циркуляции абонентских систем, что позволяет защи-тить котлы от подпитки их некачественной водой при наличии утечек, а в ряде случае вообще отказаться от водоподготовки и обеспечить надежный безнакипный режим котлов.

    В автономных и крышных котельных ремонтные участки не предусматриваются. Ремонт оборудования, арматуры, при-боров контроля и регулирования производится специализиро-ванными организациями, имеющими соответствующие ли-цензии, с использованием их грузоподъемных устройств и баз.

    Оборудование автономных котельных должно распола-гаться в отдельном помещении, недоступном для несанкцио-нированного проникновения. Для встроенных и пристроен-ных автономных котельных предусматривают закрытые скла-ды хранения твердого или жидкого топлива, расположенные вне помещения котельной и здания, для теплоснабжения кото-рого она предназначена.

    Оборудование автономных источников теплоснабжения, к кото-рым относятся чугунные стальные котлы, малометражные сталь-ные и чугунные секционные котлы, малогабаритные модульные котлы, горизонтальные секционные кожухотрубные и пластин-чатые водонагреватели, пароводяные и емкостные подогревате-ли. В настоящее время отечественная промышленность выпуска-ет чугунные и стальные котлы, предназначенные для сжигания газа, жидкого котельно-печного топлива, для слоевого сжигания сортированного твердого топлива на колосниковых решетках и во взвешенном (вихревом, псевдосжиженном) состоянии. При необходимости твердотопливные котлы могут быть переобору-дованы для сжигания газообразного и жидкого топлива путем установки на фронтальной плите соответствующих газогорелочных устройств или форсунок и автоматики к ним.

    Из малометражных чугунных секционных котлов наиболь-шее распространение получили котлы марки КЧМ различных модификаций.

    Малометражные стальные котлы выпускаются многими машиностроительными предприятиями различных ведомств в основном в качестве товаров народного потребления. Они ме-нее долговечны, чем чугунные котлы (срок службы чугунных котлов до 20 лет, стальных 8-10 лет), но менее металлоемки и не столь трудоемки в изготовлении и несколько дешевле на рынке котлов и оборудования.

    Цельносварные стальные котлы более газоплотны, чем чу-гунные. Благодаря гладкой поверхности их загрязнение с газо-вой стороны в процессе эксплуатации меньше, чем у чугунных котлов, они проще в ремонте и обслуживании. Экономичность (КПД) стальных котлов близка к показателям чугунных.

    Кроме отечественных котлов на рынке котлов и котельно-вспомогательного оборудования в последние годы появи-лось много котлов зарубежных фирм, в том числе: PROTHERM (Словакия), Buderus (предприятие, входящее в группу компа-ний Bosch, Германия), Vapor Finland Оу (Финляндия). Эти фирмы выпускают котельное оборудование мощностью от 10 кВт до 1 МВт для промышленных предприятий, складов, ча-стных домов, коттеджей, небольших производств. Все они от-личаются высоким качеством исполнения, хорошей автомати-кой и приборами управления, отличным дизайном. Но их роз-ничные цены при тех же теплотехнических характеристиках в 3-5 раз выше цен на российское оборудование, поэтому они менее доступны для массового покупателя.

    Водоводяные горизонтальные секционные кожухотрубные и пластинчатые водоподогреватели (рисунок ниже), применяемые в ко-тельных, включаются по противоточным схемам потоков теп-лоносителей.

    Конструкция водоподогревателей водоводяного секционного (а) и пластинчатого (б) водонагревателей

    1 - входной патрубок; 2 - трубные решетки; 3 - трубки; 4 - корпус; 5 - пакет; 6 - болты; 7 - пластины



    Пароводяные и емкостные подогреватели применяются в па-ровых котельных. Они оборудуются предохранительными кла-панами со стороны нагреваемой среды, а также воздушными и спускными устройствами. Каждый пароводяной подогрева-тель должен быть оборудован конденсатоотводчиком или регу-лятором перелива для отвода конденсата, штуцерами с запор-ной арматурой для выпуска воздуха и спуска воды и предохранительным клапаном, предусматриваемым в соответствии с требованиями ПБ 10-115-96 Госгортехнадзора России.

    В котельных рекомендуется применять бесфундаментные насосы, подачу и напор которых определяют теплогидравлическим расчетом. Число насосов первичного контура котельной следует принимать не менее двух, один из которых является ре-зервным. Допускается применение сдвоенных насосов.

    Автономные источники теплоснабжения имеют малые га-бариты, поэтому число единиц запорной и регулирующей ар-матуры на трубопроводах должно быть минимально необходи-мым, обеспечивающим надежную и безаварийную работу. Места установки запорной и регулирующей арматуры должны оборудоваться искусственным освещением.

    Расширительные баки должны быть снабжены предохрани-тельными клапанами, а на подающем трубопроводе при вводе (непосредственно после первой задвижки) и на обратном тру-бопроводе перед регулирующими устройствами, насосами, приборами учета расхода воды и теплоты установлены по од-ному грязевику (или ферромагнитному фильтру).

    В автономных котельных, работающих на жидком и газооб-разном топливе, следует предусматривать легкосбрасываемые (при взрыве) ограждающие конструкции из расчета 0,03 м 2 на 1 м 3 объема помещения, в котором находятся котлы.

    Поквартирное теплоснабжение - обеспечение теплотой систем отопления, вентиляции и горячего водоснабжения квартир в жилом здании. Система состоит из индивидуального источника теплоты - теплогенератора, трубопроводов горяче-го водоснабжения с водоразборной арматурой, трубопроводов отопления с отопительными приборами и теплообменников систем вентиляции.

    Индивидуальные теплогенераторы - автоматизированные котлы полной заводской готовности на различных видах топ-лива, в том числе на природном газе, работающие без постоян-ного обслуживающего персонала.

    Теплогенераторы с закрытой (герметичной) камерой сгора-ния следует применять для многоквартирных жилых домов и встроенных помещений общественного назначения (темпера-тура теплоносителя до 95 °С, давление теплоносителя до 1,0 МПа). Они снабжены автоматикой безопасности, обеспе-чивающей прекращение подачи топлива при перерыве в пода-че электроэнергии, при неисправности цепей защиты, погаса-нии пламени горелки, падении давления теплоносителя ниже предельно допустимого, достижении предельно допустимой температуры теплоносителя, нарушении дымоудаления.

    Теплогенераторы с открытой камерой сгорания для систем горячего водоснабжения применяют в квартирах жилых домов высотой до 5 этажей.

    Теплогенераторы общей теплопроизводительностью до 35 кВт можно устанавливать в кухнях, коридорах, в нежилых помещениях квартир, а во встроенных помещениях общест-венного назначения - в помещениях без постоянного пребы-вания людей. Теплогенераторы общей теплопроизводитель-ностью свыше 35 кВт (но до 100 кВт) следует размещать в спе-циально отведенном помещении.

    Забор воздуха, необходимого для горения топлива, должен осуществляться: для теплогенераторов с закрытыми камерами сгорания воздуховодами снаружи здания; для теплогенерато-ров с открытыми камерами сгорания - из помещений, в кото-рых они установлены.

    При размещении теплогенератора в помещениях общест-венного назначения предусматривают установку системы кон-троля загазованности с автоматическим отключением подачи газа для теплогенератора при достижении опасной концентра-ции газа в воздухе - свыше 10 % нижнего концентрационного предела распространения пламени природного газа.

    Техническое обслуживание и ремонт теплогенераторов, га-зопровода, дымохода и воздуховода для забора наружного воз-духа осуществляются специализированными организациями, имеющими свою аварийно-диспетчерскую службу.

    Основное назначение любой системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты требуемого качества (т.е. теплоносителем требуемых параметров).

    В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные .

    В децентрализованных системах источник теплоты и теплоприемники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприемников может осуществляться практически без промежуточного звена - тепловой сети.

    Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные .

    В индивидуальных системах теплоснабжение каждого помещения (участка цеха, комнаты, квартиры) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий.

    В системах централизованного теплоснабжения источник теплоты и теплоприемники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителей передается по тепловым сетям.

    В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы:

    • групповое - теплоснабжение от одного источника группы зданий;
    • районное - теплоснабжение от одного источника нескольких групп зданий (района);
    • городское - теплоснабжение от одного источника нескольких районов;
    • межгородское - теплоснабжение от одного источника нескольких городов.

    Процесс централизованного теплоснабжения состоит из трех последовательных операций:

    1. подготовки теплоносителя;
    2. транспортировки теплоносителя;
    3. использования теплоносителя.

    Подготовка теплоносителя проводится в специальных так называемых теплоподготовительных установках на ТЭЦ, а также в городских, районных, групповых (квартальных) или промышленных котельных. Транспортируется теплоноситель по тепловым сетям. Используется теплоноситель в теплоприемниках потребителей. Комплекс установок, предназначенных для подготовки, транспортировки и использования теплоносителя, составляет систему централизованного теплоснабжения. Для транспорта теплоты применяются, как правило, два теплоносителя: вода и водяной пар. Для удовлетворения сезонной нагрузки и нагрузки горячего водоснабжения в качестве теплоносителя используется обычно вода, для промышленной технологической нагрузки - пар.

    Для передачи теплоты на расстояния, измеряемые многими десятками и даже сотнями километров (100-150 км и более), могут использоваться системы транспорта теплоты в химически связанном состоянии.

    бифилярный теплоснабжение централизованный теплосеть

    Трубопроводы тепловых сетей прокладываются в подземных проходных и непроходных каналах - 84%, бесканальная подземная прокладка - 6% и надземная (на эстакадах) - 10%. В среднем по стране свыше 12% тепловых сетей периодически или постоянно затапливаются грунтовыми или поверхностными водами, в отдельных городах эта цифра может достигать 70% теплотрасс. Неудовлетворительное состояние тепловой и гидравлической изоляции трубопроводов, износ и низкое качество монтажа и эксплуатации оборудования тепловых сетей отражается статистическими данными по аварийности. Так, 90% аварийных отказов приходится на подающие и 10% - на обратные трубопроводы, из них 65% аварий происходит из-за наружной коррозии и 15% - из-за дефектов монтажа (преимущественно разрывов сварных швов).

    На этом фоне всё увереннее позиции децентрализованного теплоснабжения, к которому следует отнести как поквартирные системы отопления и горячего водоснабжения, так и домовые, включая многоэтажные здания с крышной или пристроенной автономной котельной. Использование децентрализации позволяет лучше адаптировать систему теплоснабжения к условиям потребления теплоты конкретного, обслуживаемого ей объекта, а отсутствие внешних распределительных сетей практически исключает непроизводственные потери теплоты при транспорте теплоносителя. Повышенный интерес к автономным источникам теплоты (и системам) в последние годы в значительной степени обусловлен финансовым состоянием и инвестиционно-кредитной политикой в стране, так как строительство централизованной системы теплоснабжения требует от инвестора значительных единовременных капитальных вложений в источник, тепловые сети и внутренние системы здания, причем с неопределенными сроком окупаемости или практически на безвозвратной основе. При децентрализации возможно достичь не только снижения капитальных вложений за счет отсутствия тепловых сетей, но и переложить расходы на стоимость жилья (т.е. на потребителя). Именно этот фактор в последнее время и обусловил повышенный интерес к децентрализованным системам теплоснабжения для объектов нового строительства жилья. Организация автономного теплоснабжения позволяет осуществить реконструкцию объектов в городских районах старой и плотной застройки при отсутствии свободных мощностей в централизованных системах. Децентрализация на современном уровне, базирующаяся на высокоэффективных теплогенераторах последних поколений (включая конденсационные котлы), с использованием энергосберегающих систем автоматического управления позволяет в полной мере удовлетворить запросы самого требовательного потребителя.

    Перечисленные факторы, в пользу децентрализации теплоснабжения привели к тому, что часто оно уже стало рассматриваться как безальтернативное техническое решение лишенное недостатков.

    Важным преимуществом децентрализованных систем является возможность местного регулирования в системах квартирного отопления и горячего водоснабжения. Однако, эксплуатация источника теплоты и всего комплекса вспомогательного оборудования квартирной системы теплоснабжения непрофессиональным персоналом (жильцами) не всегда дает возможность в полной мере использовать это преимущество. Также необходимо учитывать, что в любом случае требуется создание, или привлечение, ремонтно-эксплуатационной организации для обслуживания источников теплоснабжения.

    Рациональной можно признать децентрализацию только на основе газообразного (природный газ) или легкого дистиллятного жидкого топлива (дизтопливо, топливо печное бытовое). Другие энергоносители:

    Твердое топливо в многоэтажной застройке. По ряду очевидных причин нереализуемая задача. В малоэтажной застройке, как показывают многие исследования на низкосортном рядовом твердом топливе (а сейчас другого в стране практически нет) экономически целесообразно строить групповую котельную;

    Сжиженный газ (пропан-бутановые смеси) для районов с большим потреблением тепла на цели отопления, даже в комплексе с энергосберегающими мероприятиями потребует строительства газохранилищ большой ёмкости (с обязательной установкой не менее двух подземных ёмкостей), что в комплексе вопросов с централизованной поставкой сжиженного газа существенно усложняет проблему;

    Электроэнергия не может и не должна использоваться на цели отопления (независимо от себестоимости и тарифов) в силу эффективности её выработки по первичной энергии для конечного потребителя (КПД30%) за исключением систем временного, аварийного, локального отопления (местного) и в районах её избытков, в ряде случаев использования альтернативных источников энергии (тепловые насосы). В этой же связи необходимо отмежеваться от безответственных заявлений в печати ряда разработчиков и производителей так называемых вихревых теплогенераторов, декларирующих тепловую эффективность устройств, работающих на вязкостной диссипации механической энергии (от электродвигателя) в 1,25 раза превосходящую установленную мощность электрооборудования.

    Установочная мощность источников теплоты при поквартирном теплоснабжении в многоэтажном здании рассчитывается по максимуму (пику) теплопотребления, т.е. по нагрузке горячего водоснабжения. Нетрудно видеть, что в этом случае для двухсот квартирного жилого здания установленная мощность теплогенераторов составит 4,8 МВт, что более чем в два раза превышает необходимую суммарную мощность теплоснабжения при подключении к центральным тепловым сетям или к автономной, например, крышной котельной. Установка емкостных водонагревателей в системе горячего водоснабжения квартиры (емкость 100-150 литров) позволяет снизить установленную мощность поквартирных теплогенераторов, однако существенно усложняет квартирную систему теплоснабжения, значительно увеличивает её стоимость и практически не применяется в многоэтажных зданиях.

    Автономные источники теплоснабжения (в том числе и поквартирные) имеют рассредоточенный в жилом районе выброс продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую обстановку, загрязняя воздух непосредственно в селитебной зоне.

    Существенно меньше проблем возникает при разработке децентрализованных систем теплоснабжения от автономных (крышных), встроенных и пристроенных котельных отдельных объектов жилого, коммунально-бытового и промышленного назначения, в том числе и типовых сооружений. Достаточно чёткая нормативная документация позволяет технически обосновать эффективное решение вопросов размещения оборудования, топливоснабжения, дымоудаления, электроснабжения и автоматизации автономного источника теплоты. Не встречает особых трудностей и разработка инженерных систем здания, включая типовые, по своей конструкции

    Таким образом, автономное теплоснабжение не должно рассматриваться как безусловная альтернатива централизованному теплоснабжению, или как отступление от завоёванных позиций. Технический уровень современного энергосберегающего оборудования по выработке, технологии транспорта и распределения теплоты позволяют создавать эффективные и рациональные инженерные системы, уровень централизации которых должен иметь соответствующее обоснование.


    VIII. Использование возобновляемых энергоресурсов

    По всей территории России зимой приходится обеспечивать подогрев воздуха в помещениях, где живут или работают люди. Оборудование для этих целей стоит колоссальные деньги. Естественной является жесткая конкуренция на рынке отопительного оборудования, а так как выбор лозунгов не очень велик, все говорят одно и то же: цена, качество, экология и энергосбережение. Иногда борьба за рынок напоминает информационную войну, в которой стороны говорят прямо противоположные вещи, не слушая друг друга.

    С первой волны демократии к нам пришла эйфория крышных котельных, потом поквартирного отопления, а сейчас модно обсуждать мини-ТЭЦ.

    Достойную конкуренцию пропагандистам децентрализации составляют производители ИТП и трубопроводов в ППУ изоляции.

    Плохо то, что на чью-то сторону позволяют себе становиться политики и представители власти.

    У централизованных систем теплоснабжения есть всего 5, но неоспоримых преимуществ:

    • - вывод взрывоопасного технологического оборудования из жилых домов;
    • - точечная концентрация вредных выбросов на источниках, где с ними можно эффективно бороться;
    • - возможность работы на разных видах топлива, включая местное, мусоре, а также возобновляемых энергоресурсах;
    • - возможность замещать простое сжигание топлива (при температуре 1500-2000 °С для подогрева воздуха до 20 °С) тепловыми отходами производственных циклов, в первую очередь теплового цикла производства электроэнергии на ТЭЦ;
    • - относительно гораздо более высокий электрический КПД крупных ТЭЦ и тепловой КПД крупных котельных работающих на твердом топливе.

    За исключением, в некоторых случаях варианта применения тепловых насосов, все остальные способы децентрализованного теплоснабжения не могут обеспечить такой комплекс преимуществ.

    Критерием отказа от централизации является удельная стоимость системы ЦТ, которая в свою очередь зависит от плотности нагрузки. В Дании централизованные системы теплоснабжения оправданы при удельной нагрузке от 30 Гкал/км 2 , при нашем климате желательна большая плотность нагрузки.

    Более правильно оценивать перспективность ЦТ через удельную материальную характеристику системы ЦТ равную произведению общей длины сети на средний диаметр, поделенному на суммарною присоединенную нагрузку (L сети × D ср / Q системы)

    В Москве удельная материальная характеристика равна примерно 30. В некоторых городах доходит до 80. В поселениях или отдельных районах городов с удельной характеристикой больше 100 централизация противопоказания - небольшие доходы от реализации тепла при значительных капитальных затратах делают ЦТ неконкурентоспособным.

    Конечно, эти подходы применимы при теплоснабжении от ТЭЦ. У крупных котельных нет будущего, с другой стороны, наличие системы тепловых сетей от крупной котельной позволяет инициировать проект строительства новой ТЭЦ. Именно отсутствие крупных тепловых сетей сдерживает реализацию в западных странах Европейской директивы о развитии когенерации.

    Почему же в России децентрализованные системы теплоснабжения стали появляться и в крупных городах с развитым ЦТ:

    • - низкое качество централизованного теплоснабжения в 90-е года ХХ в.;
    • - завышение стоимости тепла в некоторых городах;
    • - сложный, дорогой, забюрократизированный порядок подключения к ЦТ;
    • - отсутствие возможности регулирования объемов потребления;
    • - невозможность жителям самостоятельно регулировать включение и отключение отопления;
    • - длительный срок летних отключений ГВС.

    С точки зрения энергоэффективности обычно называются фантастически завышенные потери в тепловых сетях без учета тех факторов, что при называемых потерях системы ЦТ вообще не смогла бы работать и тепловые потери в системе от ТЭЦ приводят к значительно меньшим удельным потерям топлива.

    Строительство новых децентрализованных источников на территории, охваченной системой ЦТ, не позволяет повысить ее удельную материальную характеристику, т.е. сдержать рост тарифов. Любая крышная котельная в зоне ЦТ - это удар по социалке. Хотя с другой стороны децентрализация некоторых районов с неплотной застройкой может оказаться чрезвычайно полезной. Надо, конечно, учитывать и роль децентрализации как конкурентного фактора для предприятий ЦТ.

    В последние годы повышение качества работы предприятий ЦТ привело к снижению объемов строительства локальных источников в крупных городах.

    • Домовые котельные в жилом секторе

    В 90-е годы ХХ в. при плохом централизованном теплоснабжении наличие собственной котельной повышало привлекательность и стоимость жилья, сейчас ситуация изменилась в обратную сторону - наличие во дворе дома котельной с относительно невысокой трубой воспринимается покупателями квартир в крупных городах негативно.

    В зонах неплотной застройки локальные источники - объективная необходимость и они составляют конкуренцию вариантам поквартирного отопления.

    Отдельно надо сказать об опыте применений крышных котельных. К основным проблемам относятся:

    • - отсутствие внятного собственника, т.к. котельная является коллективной собственностью жителей;
    • - не начисление амортизации и длительной срок сбора средств на необходимые крупные ремонты;
    • - видимый дым над зданием в холодную погоду с соответствующей индустриализацией пейзажа;
    • - отсутствие системы быстрой поставки запасных частей.

    Встречаются случаи повышенной вибрации; выхода из строя котлов из-за повышенной подпитки и образования накипи; отсутствие возможности замены котла без вертолета; отключения по газу как из-за аварий на газопроводах, так и из-за срабатывания автоматики котельных при снижении давления газа в холодную погоду.

    В зонах неплотной застройки, где оптимально развито децентрализованное теплоснабжение обычно нет проблем с местом для размещения котельной, соответственно нет смысла ставить ее в буквальном смысле людям на голову.

    • Поквартирное отопление

    «Поквартирка» пришла к нам их теплых стран. Только в Италии 14 млн. квартир имеет поквартирное отопление. Но при итальянском климате централизация теплоснабжения бессмысленна, а подъезды и подвалы отапливать не надо.

    В наших климатических условиях надо отапливать все помещения здания, иначе срок его службы сокращается в разы, то есть при наличии поквартирного отопления надо иметь и общую котельную для отопления остальных помещений.

    Основные проблемы поквартирного отопления (ПО):

    • Недопустимо использование ПО только в отдельных квартирах многоквартирных жилых домов. Дымоход приходится делать на стену здания, при этом продукты сгорания могут попадать в вышерасположенные квартиры.
    • Допустимо применение котлов только с закрытой камерой сгорания и выделенным воздуховодом для забора воздуха с улицы.
    • Должна быть обеспечена возможность доступа в квартиру при длительном отсутствии жильцов. Недопустимо длительное отключение котлов самими жителями в зимний период.
    • Система ПО не должна применяться в зданиях типовых серий. Здание должно быть специально спроектировано под ПО. Основные причины этого - необходимость организации эффективного дымоудаления, т.к. на одном этаже к общему дымоходу может подключаться только один котел.
    • Работа любых котлов установленных в квартирах будет периодической, т.е. в режиме включено-выключено. Это определяется тем, что мощность котла подбирается не по нагрузке отопления, а по пиковой нагрузке ГВС превышающей в несколько раз отопительную, а глубина регулирования мощности большинства котлов от 40 до 100%. Задача - избежать образования конденсата в газоходах, для этого они должны быть горизонтальными, теплоизолированными и иметь устройства сбора и нейтрализации конденсата.

    Проблемы дымоудаления особенно обостряются в высотных зданиях, т.к. тяга не регулируется и меняется в больших пределах по высоте здания, а также при изменении погоды.

    • Необходимость значительной мощности квартирного котла для обеспечения максимального расхода горячей воды определяет то обстоятельство, что суммарная мощность квартирных котлов в 2-2,5 раза превышает мощность альтернативной домовой котельной.
    • Серьезной проблемой является свободный, неконтролируемый доступ к котлам детей и людей с поврежденной психикой. С другой стороны доступ специалистов для обслуживания часто бывает затруднен.
    • Срок службы котлов 15-20 лет, но в наших условиях серьезные поломки происходят гораздо быстрее. Для предупреждения накипи в теплообменниках, обеспечения длительной работы мембраны и сальников желательна установка системы фильтров грубой и тонкой очистки воды. У нас их, практически, не ставят. Объем технического обслуживания обычно определяют сами жильцы, причем имеют право от него отказаться.

    Часто поквартирное отопление называют «автономным» имея в виду, что в каждой квартире создается своя независимая от других жителей система отопления и ГВС. Фактически же поквартирное отопление здания - это жестко взаимозависимая по газу, воде, дымоудалению и теплоперетокам система с распределенным сжиганием.

    С точки зрения энергоэффективности эта система проигрывает варианту автоматизированной домовой газовой котельной с поквартирным учетом и регулированием из-за полного отсутствия режимного регулирования процесса сжигания.

    Экономическая выгодность ПО объясняется отсутствием в расчетах амортизационных отчислений и искусственно сдерживаемой ценой на бытовой газ (в большинстве других стран цены на газ для бытового потребления в 1,5-3 раза выше цены для крупных потребителей).

    Еще одна из причин - желание руководителей администраций небольших муниципальных образований полностью снять с себя ответственность за теплоснабжение, переложив ее на самих жителей. В некоторых поселениях с несколькими двух-трехэтажными домами внедрение ПО действительно оправдано, т.к. эксплуатация мелких котельных при мизерном объеме реализации оказывается слишком дорогой для жителей.

    Просим Вас оставлять свои замечания и предложения по стратегии . Для чтения документа выберите интересующий Вас раздел.

    Энергосберегающие технологии и методы