Гидравлический расчет паропроводов систем парового отопления низкого и высокого давления.

При движении пара по длине участка его количество уменьшается вследствие попутной конденсации, снижается также его плотность из-за потери давления. Снижение плотности сопровождается увеличением, несмотря на частичную конденсацию, объема пара к концу участка, что приводит к возрастанию скорости движения пара.

В системе низкого давления при давлении пара 0,005-0,02 МПа эти сложные процессы вызывают практически незначительные изменения параметров пара. Поэтому принимают расход пара постоянным на каждом участке, а плотность пара постоянной на всех участках системы. При этих двух условиях гидравлический расчет паропроводов проводят по удельной линейной потере давления, исходя из тепловых нагрузок участков.

Расчет начинают с ветви паропровода наиболее неблаго­приятно расположенного отопительного прибора, каковым является прибор, наиболее удаленный от котла.

Для гидравлического расчета паропроводов низкого дав­ления используют табл. 11.4 и 11.5 (см. Справочник проек­тировщика), составленные при плотности 0,634 кг/м 3 , со­ответствующей среднему избыточному давлению пара 0,01 МПа, и эквивалентной шероховатости труб к Э =0,0002 м (0,2 мм). Эти таблицы, по структуре аналогичные табл. 8.1 и 8.2, отличаются величиной удельных потерь на трение, обусловленной иными значениями плотности и кинемати­ческой вязкости пара, а также коэффициента гидравличе­ского трения λ для труб. В таблицы внесены тепловые нагрузки Q, Вт, и скорость движения пара w , м/с.

В системах низкого и повышенного давления во избежа­ние шума установлена предельная скорость пара: 30 м/с при движении пара и попутного конденсата в трубе в одном и том же направлении, 20 м/с при встречном их движении.

Для ориентации при подборе диаметра паропроводов вычисляют, как и при расчете систем водяного отопления, среднее значение возможной удельной линейной потери давления R ср по формуле

где р П - начальное избыточное давление пара, Па; Σl пар - общая длина участков паропровода до наиболее удаленного отопительного прибора, м.

Для преодоления сопротивлений, не учтенных при рас­чете или введенных в систему в процессе ее монтажа, остав­ляют запас давления до 10% расчетной разности давления, т. е. сумма линейных и местных потерь давления по основ­ному расчетному направлению должна составлять около 0,9 (р П - р пр).

После расчета ветви паропровода до наиболее неблаго­приятно расположенного прибора переходят к расчету вет­вей паропровода до других отопительных приборов. Этот расчет сводится к увязке потерь давления на параллельно соединенных участках основной (уже рассчитанной) и второстепенной (подлежащей расчету) ветвях.

При увязке потерь давления на параллельно соединен­ных участках паропроводов допустима невязка до 15%. В случае невозможности увязки потерь давления применя­ют дросселирующую шайбу (§ 9.3). Диаметр отверстия дросселирующей шайбы d ш, мм, определяют по формуле

где Q уч – тепловая нагрузка участка, Вт, ∆р ш – излишек давления, Па, подлежащий дросселированию.

Шайбы целесообразно применять для погашения излишнего давления, превышающего 300 Па.

Расчет паропроводов систем повышенного и высокого давления проводят с учетом изменения объема и плотности пара при изменении его давления и уменьшения расхода пара вследствие попутной конденсации. В случае, когда известно начальное давление пара р П и задано конечное давление перед отопительными приборами р ПР, расчет паропроводов выполняют до расчета конденсатопроводов.

Средний расчетный расход пара на участке определяют по транзитному расходу G кон половины расхода пара, теряемого при попутной конденсации:

Gуч=G кон +0,5 G П.К. ,

Где G П.К – дополнительное количество пара в начале участка, определяемое по формуле

G П.К =Q тр /r;

r - удельная теплота парообразования (конденсации) при давле­нии пара в конце участка; Q тр - теплопередача через стенку трубы на участке; когда уже известен диа­метр труб; ориентировочно принимают по следующим зависимо­стям: при D у =15-20 мм Q тр = 0,116Q кон; при D у =25-50 мм Q тр =0,035Q кон; при D у >50мм О тр =0,023Q кон (Q кон - количество теплоты, которое требуется доставить в прибор или в конец участ­ка паропровода).

Гидравлический расчет выполняют по способу приве­денных длин, который применяется в том случае, когда линейные потери давления являются основными (около 80%), а потери давления в местных сопротивлениях сравни­тельно малы. Исходная формула для определения потерь давления на каждом участке

При расчете линейных потерь давления в паропроводах используют табл. II.6 из Справочника проектировщика составленную для труб с эквивалентной шероховатостью внутренней поверхности k э =0,2 мм, по которым перемеща­ется пар, имеющий условно постоянную плотность 1 кг/м 3 [избыточное давление такого пара 0,076 МПа, температура 116, 2 0 С, кинематическая вязкость 21*10 -6 м 2 /с]. В табли­цу внесены расход G, кг/ч, и скорость движения ω, м/с, пара. Для подбора диаметра труб по таблице вычисляют среднее условное значение удельной линейной потери дав­ления

где ρ ср - средняя плотность пара, кг/м 3 , при среднем его давлении в системе

0.5 (Рп+Р ПР); ∆р пар – потери давления в паропроводе от теплового пункта до наиболее удаленного (концевого) отопительного прибора; р ПР – необходимое давление перед вентилем концевого прибора, принимаемое равным 2000 Па при отсутствии конденсатоотводчика за прибором и 3500 Па при использовании термостатического конденсатоотводчика.

По вспомогательной таблице получают в зависимости от среднего расчетного расхода пара условные значения удельной линейной потери давления R усл и скорости движения пара ω усл. Переход от условных значений к действительным, соответствующим параметрам пара на каждом участке, делают по формулам

где рср.уч - действительное среднее значение плотности пара на участке, кг/м 3 ; определяемое по его среднему давлению на том же участке.

Действительная скорость пара не должна превышать 80 м/с (30 м/с в системе повышенного давления) при движе­нии пара и попутного конденсата в одном и том же направ­лении и 60 м/с (20 м/с в системе повышенного давления) при встречном их движении.

Итак, гидравлический расчет проводится с усреднением значений плотности пара на каждом участке, а не в целом для системы, как это делается при гидравлических расчетах систем водяного отопления и парового отопления низкого давления.



Потери давления в местных сопротивлениях, составляю­щие всего около 20% общих потерь, определяют через эк­вивалентные им потери давления по длине труб. Эквива­лентную местным сопротивлениям, дополнительную длину трубы находят по

Значения d В /λ приведены в табл. 11.7 в Справочнике проектировщика. Видно, что эти значения должны возра­стать с увеличением диаметра труб. Действительно, если для трубы D у 15 d В /λ =0,33 м, то для трубы D у 50 они со­ставляют 1,85 м. Эти цифры показывают длину трубы, при которой потеря давления на трение равна потере в местном сопротивлении с коэффициентом ξ=1,0.

Общие потери давления ∆р уч на каждом участке паро­провода с учетом эквивалентной длины определяют по фор­муле (9.20)

где l прив =l+l экв - расчетная приведенная длина участка, м, включающая фактическую и эквивалентную местным сопротивле­ниям длины участка.

Для преодоления сопротивлений, не учтенных при рас­чете по основным направлениям, принимают запас не менее 10% расчетного перепада давлений. При увязке потерь давления в параллельно соединенных участках допустима, как и при расчете паропроводов низкого давления, невязка до 15%.

Введение

тепловой электростанция перегретый пар

Снижение уровня промышленного потребления пара является известным фактом и серьезной проблемой тепловых электростанций, поскольку это делает проблематичной полноценную загрузку турбин, спроектированных специально для этих целей (например, турбин типа ПТ-60 и ПТ-80). Столь же серьезно проблема стоит и для владельцев сетевых паропроводов, т.к. транспортировка малых расходов влажного пара через большие проходные сечения существующих паропроводов весьма убыточна, и приводит к значительным потерям пара и конденсата.

В настоящее время в нормативной документации отсутствует сформировавшееся представление об особенностях и критериях безопасности таких режимов эксплуатации. Поэтому владельцы паропроводов, будучи связанными юридическими обязательствами, вынуждены продолжать эксплуатацию существующих паропроводов в малорасходных режимах.

Особенности подхода к проектированию и эксплуатации паропроводов влажного и перегретого пара

Проектирование паропроводов, предназначенных для обеспечения паром в промышленных масштабах, как правило, первоначально проводилось в предположении, что транспортироваться будет именно перегретый пар. Поскольку в нынешних условиях транспортируется влажный пар, целесообразно выяснить, в чем состоят наиболее существенные особенности подхода к проектированию паропроводов влажного и перегретого пара (см. таблицу).

Паропроводы влажного пара

Паропроводы перегретого пара

Имеют, как правило, небольшую протяженность и прокладываются преимущественно в пределах производственных помещений с положительной температурой.

Проходят, в основном, по открытой местности и имеют протяженность до нескольких километров.

Снабжаются системой возврата конденсата, которая функционирует постоянно. Для надежного отвода конденсата применяются уклоны трассы порядка 4 мм/м, а также специальные вертикальные участки для разделения расходов конденсата по зонам дренирования. Расстояние между узлами дренирования составляет 30-50 м.

Конденсат образуется в переходных режимах прогрева и остывания паропроводов. Конденсат сбрасывается в ливневую или промышленную канализацию. При нормальной эксплуатации паропровода система дренирования отключается, поскольку предполагается, что конденсат при рабочих параметрах и расходах пара не образуется.

Расстояние между узлами дренирования диктуется особенностями местности и прокладки паропровода и может составлять от нескольких сотен метров до километра.

Нормальный уклон трассы считается равным 2 мм/м.

Направление уклонов горизонтальных участков должны в основном совпадать с направлением движения пара.

Направление уклонов по отношению к направлению движения пара не имеет принципиального значения.

На всем протяжении трассы устанавливаются специальные карманы того же диаметра, что и основной трубопровод для накопления конденсата, сепараторы для улавливания влаги из потока, а также конденсатоот- водчики постоянного действия. На контруклонах (если их не удается избежать) конденсатоотводчики устанавливаются с меньшим шагом, чем на участках с уклоном.

Специальные карманы для накопления конденсата, сепараторы и конденсатоотводчики, как правило, не устанавливаются. В случае, если карманы для накопления конденсата все же заложены в конструкцию паропровода, их диаметр принимается меньшим, чем диаметр основного паропровода.

В местах сопряжения труб различного диаметра применяют специальные эксцентрические переходники, позволяющие избегать местного скопления конденсата.

Устанавливаются концентрические переходники.

Для измерения необходимых характеристик потока влажного пара у потребителя применяются специальные приборы.

Расход пара измеряется с помощью расходомерных шайб.

Таким образом, основные различия особенностей проектирования паропроводов влажного и перегретого пара концентрируются вокруг условий отвода конденсата, а также в особенностях сведения теплового баланса.

Для паропроводов влажного пара все вопросы дренирования продумываются заранее, а для паропроводов, спроектированных для транспортировки перегретого пара, но используемых для транспортировки влажного пара, их приходится решать «как получится». В последнем случае удовлетворительное решение является весьма затруднительным и затратным, поскольку существующие паропроводы уже вписаны в техническую инфраструктуру, внесение изменений в которую (например создание условий для возврата конденсата) весьма проблематично. Кроме того, не все потребители готовы оплачивать безвозвратные потери, сопровождающие транспортировку влажного пара, если это не было предусмотрено исходными договорными отношениями.

Использование паропроводов перегретого пара для транспортировки влажного пара на практике выглядит следующим образом: во время эксплуатации все дренажные линии паропровода частично открываются и образующийся конденсат постоянно сливается в ливнестоки или промышленную канализацию. Если паропровод проходит по открытой местности, то надежное использование на нем конденсатоотводчиков (особенно при неравномерном суточном графике потребления пара) становится проблематичным, поскольку зимой они легко обмерзают и выходят из строя, допуская при этом существенный «проскок пара» в атмосферу.

Степень открытия дренажных линий проверяется и корректируется обслуживающим персоналом вручную один раз в полторы-две недели. Процесс корректировки осуществляется изменением положения запорных органов дренажных линий «на слух» - по специфическим шумовым характеристикам истечения. В силу этого процесс регулировки носит субъективный характер и зависит от текущего расхода пара к потребителям и квалификации персонала, проводящего обход. По существу, для обслуживающего персонала регулировка является лишь изменением проходного сечения задвижки: стабильное истечение обеспечивает степень открытия, при которой из дренажа идет пароводяная смесь с расходом, практически не зависящим от положения управляющего органа в достаточно широком диапазоне его перемещений. При дальнейшем увеличении проходного сечения задвижки из дренажа появляется большое количество пара, что считается браком в регулировке.

Распределение удаляемых объемов конденсата через отдельные узлы дренирования по длине паропровода неравномерно и зависит, по существу, от размеров участков, где осуществляется сбор конденсата, а эти размеры, в свою очередь, определяются рельефом местности, по которой проложен паропровод.

Ввиду того что конденсат в паропроводе находится на линии насыщения, его сброс через приоткрытую дренажную линию в окружающую среду приводит к вскипанию и резкому повышению паросодержания. Это, в свою очередь является причиной резкого изменения физических свойств потока дренажа. В частности, существенно изменяется характеристика, которая определяет темп эвакуации конденсата из паропровода, - скорость звука. Величина скорости звука задает величину предельного расхода конденсата через минимальное проходное сечение дренажной линии. На рис. 1 приведены известные экспериментальные данные по зависимости скорости звука а от объемного расходного паросодержания двухфазного потока в. Здесь скорость звука а=1500 м/с соответствует воде на линии насыщения, скорость звука а=330 м/с - насыщенному пару. В промежутке между значениями объемного паросодержания в=0,2-0,8 скорость звука резко снижается - ориентировочно до 20 м/с. Этот показатель не является стабильным и зависит от структуры двухфазного потока. При этом в отдельных случаях скорость звука может снижаться до 5-10 м/с.

Вопрос о том, что дренажные линии, работающие в критическом режиме истечения вскипающего конденсата, могут быть «узким местом» при транспортировке влажного пара в непредназначенных для этого паропроводах, ранее не поднимался, и общепринятых норм для оценки этого фактора не существует. Но, как будет показано ниже, эта особенность дренирования является значимой при рассмотрении эксплуатационной надежности и безопасности паропроводов.

Известно, что паропроводы влажного пара имеют следующие особенности эксплуатации, влияющие на их надежность и безопасность.

  • 1. При возникновении дисбаланса между притоком и оттоком конденсата им в первую очередь заполняются участки паропроводов с более низкими геодезическими отметками.
  • 2. Возникновение волн на поверхности ручья конденсата (при его достаточно высоком уровне) может привести к полному перекрытию проходного сечения трубопровода и возникновению конденсатной пробки. Такая водяная пробка, двигаясь со скоростью пара, обладает огромной кинетической энергией, которая высвобождается при встрече с препятствием (например гибом или запорным органом); в результате возникает явление гидравлического удара, который может привести к повреждению или разрушению паропровода или его отдельных элементов.
  • 3. Явления, близкие к гидравлическим ударам, более вероятны при встречном направлении движения пара и конденсата, когда волны, образующиеся на поверхности потока, захватываются встречным потоком пара.
  • 4. Если уровень расходного паросодержания в паропроводе снижается до значения 0,3, возможно возникновение снарядного режима течения конденсата, которое по своему воздействию на паропровод аналогично продолжительной серии гидравлических ударов.
  • 5. Возникновение снарядного режима течения возможно также в протяженных дренажных линиях, связывающих узлы отвода конденсата с ливнестоками, что может привести к повреждению штуцеров в зонах присоединения дренажных линий к основному паропроводу.

Если арматура дренажных линий в условиях эксплуатации осуществляет пропуск критических расходов конденсата, то при неравномерном суточном потреблении пара, а также при изменении температуры окружающей среды, возможно возникновение условий, при которых темп притока конденсата и темп его эвакуации будут существенно отличаться.

Дисбаланс между притоком и оттоком конденсата с учетом возможности его накопления может стать причиной полного или частичного заполнения отдельных участков паропровода конденсатом и, как следствие, - возникновения гидравлических ударов.

Под условиями накопления конденсата следует понимать профиль прокладки паропровода, при котором на трассе имеется участок относительно небольшой протяженности, в котором уровень конденсата может полностью или частично перекрыть проходное сечение трубы. Это может быть участок между двумя вертикально расположенными компенсаторами или участок с уклоном и контруклоном, или участок с уклоном, ограниченный вертикальным компенсатором.

Рассмотрим пример конкретного паропровода общей протяженностью около 5 км, на котором длина одного из участков сбора конденсата Ду500 мм, ограниченного уклоном и контруклоном, составляет примерно 1 км.

Пар от ТЭЦ имеет начальное давление 1,37 МПа и температуру 250 ОС. Паропровод первоначально рассчитывался на пропуск примерно 35 кг пара в секунду. Этот расход обеспечивал сохранение перегрева на всей протяженности паропровода от ТЭЦ до потребителей. В настоящее время реальный расход пара составляет 7-10 кг/с, при этом на большей длине паропровода транспортируется влажный пар. Расчетная схема рассматриваемого паропровода приведена на рис. 2.


Конкретная задача для рассматриваемого паропровода сформулирована следующим образом. Предположим, что положение запорных органов дренажной линии при начальных условиях теплообмена с окружающей средой и некотором заданном потреблении пара обеспечивает полную эвакуацию образующегося конденсата (нулевой баланс между его притоком и стоком). Необходимо получить ответ на вопрос: может ли при изменившихся условиях теплообмена с окружающей средой или условиях потребления пара за интервал времени между очередными проверками в паропроводе скопиться достаточное количество конденсата, чтобы полностью или частично (на 50-70%) перекрыть его проходное сечение?

Если нагревать воду в открытом сосуде при атмосферном давлении, то ее температура будет непрерывно повышаться до тех пор, пока вся масса воды не прогреется и не закипит. В процессе нагревания испарение воды происходит с ее открытой поверхности, при кипении пар из воды образуется на нагреваемой поверхности и частично во всем объеме жидкости. Температура воды остается при этом постоянной (равной в рассматриваемом случае около 100 °С), несмотря на продолжающийся извне подвод теплоты к сосуду. Это явление объясняется тем, что при кипении подводимая теплота расходуется на работу по расщеплению частичек воды и образование из них пара.

При нагревании воды в закрытом сосуде ее температура повышается также лишь до тех пор, пока вода не закипит. Выделяющийся из воды пар скапливается в верхней части сосуда над поверхностью уровня воды; его температура равна температуре кипящей воды. Такой пар называют насыщенным.

Если пар из сосуда не отводится, а подвод теплоты к нему (извне) продолжается, то давление во всем объеме сосуда будет увеличиваться. Вместе с увеличением давления станет увеличиваться и температура кипящей воды и образующегося из нее пара. Опытным путем установлено, что каждому давлению соответствуют своя температура насыщенного пара и равная ей температура кипения воды, а также свой удельный объем пара.

Так, при атмосферном давлении (0,1 МПа) вода начинает кипеть и превращается в пар при температуре около 100 °С (точнее при 99,1 °С); при давлении 0,2 МПа - при 120 °С; при давлении 0,5 МПа - при 151,1 °С; при давлении 10 МПа - при 310 °С. Из приведенных примеров видно, что с ростом давления температура кипения воды и равная ей температура насыщенного пара увеличиваются. Удельный объем пара с ростом давления, наоборот, уменьшается.

При давлении 22,5 МПа нагреваемая вода переходит в насыщенный пар мгновенно, поэтому скрытая теплота парообразования при этом давлении равна нулю. Давление пара 22,5 МПа называют критическим.

Если насыщенный пар охлаждать, то он станет конденсироваться, т.е. превратится в воду; при этом он будет отдавать свою теплоту парообразования охлаждающему телу. Указанное явление имеет место в системах парового отопления, в которые насыщенный пар поступает из котельной или паровой магистрали. Здесь он охлаждается воздухом помещения, отдает воздуху свою теплоту, за счет чего последний нагревается, а пар конденсируется.

Состояние насыщенного пара является весьма неустойчивым: даже небольшие изменения давления и температуры приводят к конденсации части пара или же, наоборот, к испарению капелек воды, имеющихся в насыщенном паре. Насыщенный пар, совершенно не содержащий капелек воды, называют сухим насыщенным; насыщенный пар с капельками воды называют влажным.

В качестве теплоносителя в системах парового отопления применяют насыщенный пар, температура которого соответствует определенному давлению.

Системы парового отопления классифицируют по следующим признакам:

По начальному давлению пара - системы низкого давления (р изб

Способу возврата конденсата - системы с самотечным возвратом (замкнутые) и с возвратом конденсата с помощью питательного насоса (разомкнутые);

Конструктивной схеме прокладки трубопроводов - системы с верхней, нижней и промежуточной прокладкой распределительного паропровода, а также с прокладкой сухого и мокрого конденсатопровода.

Схема системы парового отопления низкого давления с верхней прокладкой паропровода показана на рис. 1, а. Насыщенный пар, образующийся в котле 1, пройдя сухопарник (сепаратор) 12, попадает в паропровод 5 и далее поступает в отопительные приборы 7. Здесь пар отдает свою теплоту через стенки приборов воздуху отапливаемого помещения и превращается в конденсат. Последний стекает по возвратному конденсатопроводу 10 в котел 1, преодолевая при этом давление пара в котле за счет давления столба конденсата, который поддерживается высотой 200 мм по отношению к уровню воды в сухопарнике 12.

Рисунок 1. Система парового отопления низкого давления: а - схема системы с верхней прокладкой паропровода; б - стояк с нижней разводкой пара; 1 - котел; 2 - гидравлический затвор; 3 - водомерное стекло; 4 - воздушная трубка; 5 - подающий паропровод; 6 - паровой вентиль; 7 - отопительный прибор; 8 - тройник с пробкой; 9 - конденсатопровод сухой; 10 - конденсатопровод мокрый; 11 - трубопровод подпитки; 12 - сухопарник; 13 - перепускная петля

В верхнюю часть возвратного конденсатопровода 10 вмонтирована трубка 4, соединяющая его с атмосферой для продувки в момент ввода и вывода системы из эксплуатации.

Уровень воды в сухопарнике контролируют с помощью водомерного стекла 3. Для предупреждения повышения давления пара в системе выше заданного уровня устанавливают гидравлический затвор 2 с рабочей высотой жидкости, равной h.

Регулировку системы парового отопления производят паровыми вентилями 6 и контрольными тройниками 8 с пробками, добиваясь, чтобы при работе парового котла в расчетном режиме в каждый отопительный прибор поступало такое количество пара, которое успевало бы полностью в нем сконденсироваться. В этом случае из предварительно открытого контрольного тройника выделение пара практически не наблюдается и вероятность «проскока» конденсата в воздушную трубку 4 ничтожна мала. Потери конденсата в системе парового отопления компенсируют подпиткой барабана котла специально обработанной водой (освобожденной от солей жесткости), подаваемой по трубопроводу 11.

Системы парового отопления, как уже отмечалось, бывают с верхней и нижней разводками паропровода. Недостатком нижней разводки пара (рис. 1, б) является то, что образующийся конденсат в подъемных и вертикальных стояках стекает навстречу пару и иногда перекрывает паропровод, вызывая гидравлические удары. Более спокойный слив конденсата происходит, если паропровод 5 проложен с уклоном в сторону движения пара, а конденсатопровод 9 - в сторону котла. Для слива попутного конденсата из паропровода в конденсатопровод систему снабжают специальными перепускными петлями 13.

Если сеть парового отопления имеет большое разветвление, то самотечный слив конденсата производят в специальный сборный бак 3 (рис. 2), откуда его перекачивают насосом 8 в котел 1. Насос работает периодически, в зависимости от изменения уровня воды в сухопарнике 2. Такую схему отопления называют разомкнутой; в ней для отделения конденсата от пара, как правило, используют конденсатоотводчики (конденсатные горшки) 7. Последние чаще всего имеют поплавковую или сильфонную конструкцию (рис. 3).

Рисунок 2. Схема принудительного возврата конденсата: 1 - котел; 2 - сухопарник; 3 - конденсатосборный бак; 4 - воздушная трубка; 5 - обводная линия; 6 - паровые вентили; 7 - конденсатоотводчик; 8 - подпиточный насос; 9 - обратный клапан

Поплавковый конденсатоотводчик (см. рис. 3, б) работает так. Пар и конденсат через входное отверстие поступают под поплавок 3, который соединен рычагом с шаровым клапаном 4. Поплавок 3 имеет форму колпака. Под давлением пара он всплывает, закрывая шаровой клапан 4. Конденсат заполняет всю камеру конденсатоотводчика; при этом пар под клапаном конденсируется и поплавок тонет, открывая шаровой клапан. Конденсат отводится в направлении, указанном стрелкой, до тех пор, пока новые порции пара, скопившиеся под колпаком, не заставят колпак всплыть. Затем цикл работы конденсатоотводчика повторяется.

Рисунок 3. Конденсатоотводчики: а – сильфонный; б – поплавковый; 1 – сильфон; 2 – легкокипящая жидкость; 3 – поплавок (опрокинутый колпак); 4 – шаровый клапан

На промышленных предприятиях, имеющих производственные потребители пара повышенного давления, системы парового отопления подключают к теплофикационным магистралям по схемам высокого давления (рис. 4). Пар от собственной или районной котельной поступает в распределительную гребенку 1, где давление его контролируют манометром 3. Затем по отходящим от гребенки 1 паропроводам 2 пар направляют к производственным потребителям, а по паропроводам Т1 - к потребителям системы парового отопления. Паропроводы Т1 подсоединены к гребенке 6 парового отопления, а гребенка 6 - к гребенке 1 через редукционный клапан 4. Редукционный клапан дросселирует пар до давления не более 0,3 МПа. Разводку паропроводов высокого давления систем парового отопления выполняют, как правило, поверху. Диаметры паропроводов и поверхности нагрева отопительных приборов этих систем несколько меньше, чем у систем парового отопления низкого давления.

Рисунок 4. Схема парового отопления высокого давления: 1 - распределительная гребенка; 2 - паропровод; 3 - манометр; 4 - редукционный клапан; 5 - байпас (обводная линия); 6 - гребенка системы отопления; 7 - грузовой предохранительный клапан; 8 - неподвижная опора; 9 - компенсаторы; 10 - паровые вентили; 11 - конденсатопровод; 12 - конденсатоотводчики

Недостатком систем парового отопления является трудность регулирования теплопроизводительности отопительных приборов, что, в конечном счете, приводит к перерасходу топлива в течение отопительного сезона.

Диаметры трубопроводов паровых систем отопления рассчитывают отдельно для паропроводов и конденсатопроводов. Диаметры паропроводов низкого давления определяют так же, как в системах водяного отопления. Потери давления в главном циркуляционном кольце системы?р рк, Па, представляют собой сумму сопротивлений (потерь давления) всех участков, входящих в это кольцо:

где n - доля потери давления на трение от общих потерь в кольце; ?I - суммарная длина участков главного циркуляционного кольца, м.

Затем определяют требуемое давление пара в котле р к, которое должно обеспечивать преодоление потерь давления в главном циркуляционном кольце. В системах парового отопления низкого давления разность давлений пара в котле и перед нагревательными приборами расходуется только на преодоление сопротивлений паровой магистрали, а конденсат возвращается самотеком. Для преодоления сопротивления отопительных приборов предусматривают запас давления р пр = 2000 Па. Удельную потерю давления пара можно определить по формуле

где 0,9 - значение коэффициента, учитывающего запас давления на преодоление неучтенных сопротивлений.

Для систем парового отопления низкого давления долю потерь на трение n принимают 0,65, а для систем высокого давления - 0,8. Вычисленное по формуле (3) значение удельной потери давления должно равняться или быть несколько больше значения, определенного по формуле (2).

Диаметры паропроводов определяют с учетом вычисленных удельных потерь давления и тепловой нагрузки каждого расчетного участка.

Диаметры паропроводов можно также определять, используя специальные таблицы в справочниках или номограмму (рис. 5), составленную для средних значений плотности пара низкого давления. При конструировании систем парового отопления скорость пара в паропроводах следует принимать с учетом рекомендаций, приведенных в табл. 1.

Таблица 1. Скорости пара в паропроводах

В остальном методика гидравлического расчета паропроводов низкого давления и сопротивлений циркуляционных колец полностью аналогична расчету трубопроводов водяных систем отопления.

Конденсатопроводы паровых систем отопления низкого давления удобно рассчитывать, используя верхнюю часть приведенной на рис. 5 номограммы.

Рисунок 5. Номограмма для расчета диаметров паропроводов и самотечных конденсатопроводов

При расчете паропроводов систем отопления высокого давления необходимо учитывать изменения объема пара от давления и уменьшение его объема при транспортировании вследствие попутной конденсации.

Расчет диаметров производят при следующих значениях параметров пара: плотность 1 кг/м 3 ; давление 0,08 МПа; температура 116,3 °С; кинематическая вязкость 21 10 6 м 2 /с. Для указанных параметров пара составлены специальные таблицы и построены номограммы, позволяющие подобрать диаметры паропроводов. После выбора диаметров производят пересчет удельной потери давления на трение с учетом действительных параметров проектируемой системы по формуле

где v - скорость пара, найденная по расчетным таблицам или номограмме.

При определении диаметров коротких паропроводов часто пользуются упрощенным методом, производя расчет по предельно допустимым скоростям движения пара.

К эксплуатационным преимуществам систем парового отопления относятся: простота пуска системы в работу; отсутствие циркуляционных насосов; низкая металлоемкость; возможность использования в ряде случаев отработавшего пара.

Недостатками систем парового отопления являются: низкая долговечность трубопроводов из-за повышенной коррозии внутренних поверхностей, вызываемой влажным воздухом в периоды прекращения подачи пара; шум, обусловленный большой скоростью движения пара по трубам; частые гидравлические удары от встречного движения попутного конденсата в подъемных паропроводах; низкие санитарно-гигиенические качества из-за высокой температуры (более 100 °С) поверхности отопительных приборов и труб, пригорания пыли и возможности ожогов людей.

В производственных помещениях с повышенными требованиями к чистоте воздуха, а также в жилых, общественных, административных и административно-бытовых зданиях применять паровое отопление нельзя. Системы парового отопления допускается использовать только в непожаро- и невзрывоопасных производственных помещениях с кратковременным пребыванием людей.

А. А. Филоненко , директор ЧТСУП «Стим-систем»

Цикл статей ориентирован на техническую поддержку специалистов, связанных с проектированием и эксплуатацией паросилового хозяйства. Первые две публикации посвящены основным понятиям, связанным с широко применяемым на предприятиях и в энергетике водяным паром, его свойствам и их влиянию на работу паровых систем («ЭиМ» № 3) и вопросам отведения конденсата из паровых спутников (ЭиМ № 4–5).

Системы распределения пара соединяют котлы со всевозможным паропотребляющим оборудованием предприятия.

Основными компонентами этих систем являются паровые коллекторы котлов, главные паропроводы, распределительные коллекторы и трубопроводы разводки пара. Каждый из них выполняет определённые функции, присущие этой системе, и совместно с сепараторами и конденсатоотводчиками способствуют эффективному использованию пара.

Колена-отстойники

Общим требованием для всех систем распределения пара является необходимость устройства через различные интервалы по длине паропровода колен отстойников (рис. 1). Они предназначены для:

  1. стекания конденсата самотёком из пара, движущегося с высокой скоростью;
  2. накапливания конденсата до тех пор, пока перепад давления не протолкнёт его через конденсатоотводчик.

Для того чтобы конденсат улавливался коленомотстойником, нужно правильно подобрать его размер. Слишком малый диаметр колена-отстойника может вызвать эффект инжекции, когда падение давления из-за высокой скорости пара вытягивает в паропровод конденсат из конденсатоотводчика.

На рис. 1 показаны принцип работы колена-отстойника и его стандартная схема, в табл. 1 — рекомендуемые размеры колен-отстойников для паропроводов.

Рис. 1 . Колено-отстойник (а — принцип работы; б — схема для выбора размера колена-отстойника по табл. 1)

Диаметр
паропровода
D, мм
Диаметр
колена-отстойника
D1, мм
Минимальная длина колена-отстойника L, мм
Разогрев
под наблюдением
Автоматический
разогрев *
15 15 250 710
20 20 250 710
25 25 250 710
50 50 250 710
80 80 250 710
100 100 250 710
150 100 250 710
200 100 300 710
250 150 380 710
300 150 460 710
350 200 535 710
400 200 610 710
450 250 685 710
500 250 760 760
600 300 915 915

* Под автоматическим разогревом следует понимать разогрев паропровода, при котором дренаж конденсата происходит через конденсатоотводчики в линию возврата конденсата, а не через спускные штуцера в атмосферу. При этом также необходимо наблюдение за процессом разогрева паропровода


Если пар подаётся в среднюю точку коллектора или коллектор не имеет уклона, то рекомендуется устраивать колена-отстойники по обе стороны коллектора с конденсатоотводчиками, имеющими суммарную пропускную способность, равную рассчитанной. При диаметре коллектора до 100 мм диаметр коленаотстойника D1 должен быть равен диаметру коллектора. При диаметре коллектора более 100 мм диаметр колена-отстойника D1 должен быть равен половине диаметра коллектора, но не менее 100 мм.

Пуск паровых сетей состоит из следующих операций:

  • прогрева и продувки паропроводов;
  • заполнения и промывки конденсатопроводов;
  • подключения потребителей.

Перед началом прогрева все задвижки на ответвлениях от прогреваемого участка плотно закрываются. Вначале прогревается магистраль, а затем поочередно ответвления от неё. Небольшие малоразветвлённые паропроводы можно прогревать одновременно по всей сети.

При возникновении гидравлических ударов подача пара немедленно сокращается, а при частых и сильных ударах — прекращается полностью впредь до полного удаления из прогреваемого участка паропровода скопившегося в нём конденсата.

Паровые коллекторы

Главный коллектор котельной — это особый вид паропровода, который может принимать пар от одного или более котлов. Чаще всего он представляет собой горизонтальную трубу большого диаметра, которая заполняется паром сверху и в свою очередь питает паром главные паропроводы. Особенно важен тщательный дренаж коллектора, чтобы любой вынос котловой воды и твёрдых частиц удалялся до распределения пара по системе. Конденсатоотводчики, предназначенные для коллектора, должны обладать способностью выводить крупные порции выносимых паром скоплений сразу же после их образования. При выборе конденсатоотводчиков нужно принимать во внимание также степень их устойчивости к гидравлическим ударам.

Выбор конденсатоотводчика и коэффициента запаса для коллекторов котла (только для насыщенного пара)

Требуемую пропускную способность конденсатоотводчиков, устанавливаемых на коллекторах котлов, практически всегда определяют как величину ожидаемого выноса котловой воды (10 % от присоединённой к коллектору нагрузки), умноженную на коэффициент запаса 1,5.

Например, к коллектору присоединены два котла общей паропроизводительностью 20 000 кг/ч. Тогда на коллектор необходимо установить конденсатоотводчик с пропускной способностью 20 000 . 10 % . 1,5 = 3000 кг/ч.

Наиболее подходящими для этих условий являются конденсатоотводчики с опрокинутым поплавком, которые способны немедленно срабатывать при залповых поступлениях конденсата, устойчивы к гидроударам, справляются с загрязнениями, сохраняют экономичность при очень малых нагрузках.

Установка конденсатоотводчиков

Если поток пара через коллектор идёт только в одном направлении, то достаточно установить один конденсатоотводчик вблизи выхода. При питании паром через среднюю точку (рис. 2) или при схожей организации двухстороннего потока пара конденсатоотводчики должны устанавливаться на каждом конце коллектора.

Рис. 2 . Коллектор котла разнонаправленными потоками пара (для коллектора с DN < 100 мм, DN колена-отстойника такой же, как у коллектора; для коллектора с DN > 100 мм, DN колена-отстойника должен быть равен 0,5DN коллектора, но не менее 100 мм)

Главные паропроводы

Чтобы обеспечить нормальную работу оборудования, питаемого по этим паропроводам, в них не должно быть ни воздуха, ни конденсата. Неполный отвод конденсата из главных паропроводов часто приводит к гидроударам и образованию пролетающих скоплений конденсата, которые могут повредить трубопроводную арматуру и другое оборудование.

Кроме того, из-за наличия конденсата в паропроводе уменьшается сухость пара, что приводит к его перерасходу.

В процессе охлаждения конденсат, находящийся в паропроводе, активно поглощает углекислый газ, превращаясь в угольную кислоту, которая приводит к ускоренной коррозии трубопроводов, арматуры и теплообменных аппаратов.

Есть два общепринятых способа разогрева главных паропроводов — контролируемый и автоматический.

Контролируемый разогрев широко применяется для первичного нагрева паропроводов большого диаметра и (или) большой протяжённости. Этот способ заключается в том, что спускные клапаны полностью открывают для свободной продувки в атмосферу до тех пор, пока в паропровод не начнёт поступать пар. Клапаны не закрывают до тех пор, пока весь конденсат (или большая его часть), образующийся при разогреве, не будет удалён. После выхода на рабочий режим удаление конденсата берут на себя конденсатоотводчики. При автоматическом режиме котёл разогревается таким образом, что паропроводы и всё оборудование или отдельные его виды постепенно набирают давление и температуру без помощи ручного управления или контроля в соответствии с заданным режимом разогрева.

Предостережение! Независимо от способа разогрева скорость подъёма температуры металла должна определяться регламентом пуска, чтобы минимизировать тепловые напряжения и предотвратить другие повреждения в системе.

Выбор конденсатоотводчика и коэффициента запаса для главных паропроводов (только насыщенный пар)

Расход конденсата в изолированном или неизолированном трубопроводах при контролируемом или автоматическом методах прогрева может вычисляться по формуле:

где G K — количество конденсата, кг/ч ;

W T — вес трубы, кг/м (по табл. 2);

L 1 — полная длина паропровода, м ;

с — удельная теплоёмкость материала трубопровода (для стали — 0,12 ккал/(кг.°С) );

t 1 — начальная температура, °С ;

t 2 — конечная температура, °С ;

r — cкрытая теплота парообразования, ккал/кг (по таблице свойств пара );

h — время разогрева, мин .

Таблица 2 . Характеристики труб для расчета потерь в окружающую среду

Диаметр
трубопровода,
дюйм
Диаметр
трубопровода,
мм
Наружный
диаметр,
мм
Наружная
поверхность,
м 2 /м
Веc, кг/м
1/8 6 10,2 0,03 0,49
1/4 8 13,5 0,04 0,77
3/8 10 17,2 0,05 1,02
1/2 15 21,3 0,07 1,45
3/4 20 26,9 0,09 1,90
1 25 33,7 0,11 2,97
1,25 32 42,4 0,13 3,84
1,5 40 48,3 0,15 4,43
2 50 60,3 0,19 6,17
2,5 65 76,1 0,24 7,90
3 80 88,9 0,28 10,10
4 100 114,3 0,36 14,40
5 125 139,7 0,44 17,80
6 150 165,1 0,52 21,20
8 200 219,0 0,69 31,00
10 250 273,0 0,86 41,60
12 300 324,0 1,02 55,60
14 350 355,0 1,12 68,30
16 400 406,0 1,28 85,90
20 500 508,0 1,60 135,00

Для быстрого определения расхода конденсата во время разогрева главного паропровода можно использовать диаграмму на рис. 3. Найденную величину расхода следует умножить на 2 (рекомендуемый коэффициент запаса для всех конденсатоотводчиков, расположенных между котлом и концом паропровода). Для конденсатоотводчиков, установленных у конца паропровода или перед регулирующими и запорными клапанами, которые часть времени находятся в закрытом положении, следует принимать коэффициент запаса 3. Рекомендуется конденсатоотводчик с опрокинутым поплавком, так как он может выводить загрязнения, залповые выбросы конденсата и противостоять гидравлическим ударам. Если даже он откажет, то обычно остаётся в открытом положении.

Рис. 3 . Диаграмма для определения количества конденсата, образующегося в трубе длиной 20 м при её нагреве от 0 °С до температуры насыщения пара

Расход конденсата при нормальной эксплуатации паропровода (после разогрева) определяется по табл. 3.

Таблица 3 . Скорость образования конденсата в паропроводах при нормальной эксплуатации, кг/час/м 2

Установка

Независимо от способа разогрева колена-отстойники и конденсатоотводчики нужно устанавливать в самых низких точках и в местах естественного дренажа, например:

  • перед восходящими стояками;
  • в конце главных паропроводов;
  • перед компенсаторами и коленами;
  • перед регулирующими клапанами и регуляторами.

На рис. 4, 5 и 6 показаны примеры организации дренажей главных паропроводов.

Отводы от главных паропроводов

Отводы от главных паропроводов — это ответвления главного паропровода, подводящие пар к паропотребляющему оборудованию. Система этих трубопроводов должна быть спроектирована и обвязана так, чтобы предотвратить скопление конденсата в любой её точке.

Выбор конденсатоотводчика и коэффициента запаса

Расход конденсата определяется по такой же формуле, что и для главных паропроводов. Рекомендуемый коэффициент запаса для отводов главных паропроводов — 2.

Установка

На рис. 7, 8 и 9 показаны соответственно рекомендуемые схемы обвязки отвода от главного паропровода до управляющего клапана при его длине до 3 м, более 3 м и в случае, когда управляющий клапан расположен ниже уровня главного паропровода.

Перед каждым регулирующим клапаном, а также перед регулятором давления, если он имеется, следует установить полнопроходной фильтр-грязевик. На фильтре надо установить продувочный клапан, а также конденсатоотводчик с опрокинутым поплавком. Через несколько дней после пуска системы проверьте сетку фильтра, чтобы решить, нужна ли в этом месте очистка от загрязнений.

Рис. 7 . Обвязка отвода длиной менее 3 м. Если имеется обратный уклон в сторону коллектора питания не менее 50 мм на 1 м, то установка конденсатоотводчика не обязательна Рис. 8 . Обвязка отвода длиной более 3 м. Перед управляющим клапаном нужно установить колено-отстойник и конденсатоотводчик. Отстойником может служить фильтр, если его продувочную трубку замкнуть на конденсатоотводчик с опрокинутым поплавком. Конденсатоотводчик должен быть снабжён встроенным обратным клапаном Рис. 9 . Независимо от длины отвода колено-отстойник и конденсатоотводчик следует устанавливать перед управляющим клапаном, расположенным ниже питающего паропровода. Если змеевик (потребитель) находится выше управляющего клапана, то конденсатоотводчик следует установить также и со стороны выхода управляющего клапана

Сепараторы

Сепараторы пара предназначены для выпуска всего конденсата, который образуется в распределительных системах. Чаще всего они применяются перед оборудованием, для которого повышенная сухость пара имеет большое значение. Принято считать полезным их установку на паропроводах вторичного пара.

Рис. 10 . Дренаж сепаратора. Для полного и быстрого стекания конденсата в конденсатоотводчик нужны полнопроходные колено-отстойник и грязевик

Отвод конденсата из паропроводов перегретого пара

Казалось бы, что если в паропроводах перегретого пара конденсат не образуется, то его там нет. Это действительно так, но только в случае, когда температура и давление в паропроводе вышли на рабочие параметры. До этого момента конденсат необходимо удалять.

Свойства и особенности применения перегретого пара

Удельная теплоёмкость вещества — это количество теплоты, требуемое для увеличения температуры 1 кг на 1 °С. Удельная теплоёмкость воды равна 1 ккал.°С, но удельная теплоёмкость перегретого пара зависит от его температуры и давления. Она уменьшается при увеличении температуры и повышается при повышении давления.

Обычно перегретый пар производится в дополнительных секциях трубок, установленных внутри котла, или в зоне выхода дымовых газов, чтобы использовать «теряемую» теплоту котла, а также в пароперегревателе, который устанавливается после котла и соединяется с паропроводом. Принципиальная схема котла с пароперегревателем представлена на рис. 11.


Рис. 11 . Схема энергетической установки с пароперегревателем


Перегретый пар обладает свойствами, которые делают его неудобным теплоносителем для процесса теплообмена и в то же время идеальным для выполнения механической работы и переноса массы, то есть для транспортирования. В отличие от насыщенного пара давление и температура перегретого пара не связаны между собой. Когда перегретый пар производят при таком же давлении, что и насыщенный, его температура и удельный объём увеличиваются.

В котлах с высокой производительностью и относительно малыми барабанами отделение пара от воды является чрезвычайно трудным процессом. Сочетание небольшого количества воды в барабанах и быстрых изменений расхода пара вызывает резкое уменьшение объёма и образование пузырей пара, что приводит к выносу котловой воды. Её можно отвести при помощи сепараторов с конденсатоотводчиками на выходах пара из парогенератора, но это не даёт 100-процентного результата. Поэтому там, где необходим сухой пар, в топке устанавливают дополнительные конвективные пучки трубок. Чтобы испарить вынос воды, к пару добавляется некоторое количество теплоты, создающей небольшой перегрев, гарантирующий получение абсолютно сухого пара.

Так как перегретый пар, возвращаясь в состояние насыщенного, отдаёт очень мало теплоты, он не является хорошим теплоносителем для процесса теплообмена. Однако для некоторых процессов, например, на электростанциях, сухой пар необходим для выполнения механической работы. Независимо от типа энергетической установки перегретый пар уменьшает количество конденсата при её запуске из холодного состояния. Перегрев также повышает производительность этих установок за счёт отсутствия конденсации на ступенях расширения. Сухой пар на выходе энергетической установки увеличивает срок службы лопаток турбины.

В отличие от насыщенного пара, теряя теплоту, перегретый пар не конденсируется, поэтому может транспортироваться по очень длинным паропроводам без существенных потерь теплосодержания на образование конденсата.

Почему нужен дренаж систем перегретого пара?

Основной причиной установки конденсатоотводчиков в системах перегретого пара является образование пусковых расходов конденсата. Они могут быть очень значительными из-за больших размеров главных паропроводов. Во время пуска, скорее всего, будут использоваться ручные спускные клапаны дренажей, так как имеется достаточно времени, чтобы их открыть и закрыть. Этот процесс называется контролируемым разогревом. Другой причиной установки конденсатоотводчиков являются неотложные ситуации, такие как потеря теплоты перегрева или отвод пара по байпасу, когда может потребоваться их срабатывание на насыщенном паре. При этих нештатных ситуациях нет времени на открытие клапанов вручную, поэтому необходимы конденсатоотводчики.

Определение расхода конденсата для конденсатоотводчиков паропроводов перегретого пара

Расход конденсата через конденсатоотводчик паропровода перегретого пара варьируется в широких пределах: от максимального при пуске до отсутствия расхода в рабочем режиме. Следовательно, это и есть те требования, которые должны предъявляться к конденсатоотводчикам любого типа.

Во время пуска очень большие паропроводы заполняются паром в холодном состоянии. На этом этапе в них будет находиться только насыщенный пар при низком давлении, пока температура паропровода не повысится. Её повышают постепенно, длительное время, чтобы не подвергать металл паропроводов резким напряжениям. Большой расход конденсата в сочетании с низким давлением — это начальные условия, требующие применения конденсатоотводчиков с большой пропускной способностью. Затем при эксплуатации паропроводов на перегретом паре требуется, чтобы эти конденсатоотводчики с завышенной пропускной способностью работали при очень высоком давлении и очень малых расходах.

Характерные пусковые расходы конденсата можно приблизительно рассчитать по формуле:

где W T — вес трубы, кг/м (по табл. 2);

r — скрытая теплота парообразования, ккал/кг ;

i — энтальпия перегретого пара при среднем давлении и температуре за рассматриваемый период разогрева, ккал/кг ;

i ” — энтальпия насыщенного пара при среднем давлении за рассматриваемый период разогрева, ккал/кг ;

0,12 — удельная теплоёмкость стальной трубы, ккал/(кг.°С) .

Пример

Исходные данные

Требуется разогреть паропровод диаметром 200 мм с температуры окружающего воздуха 21 °С до температуры 577 °С при среднем давлении за последний 2-часовой период 8,3 кг/см 2 изб. за 11 часов. Расстояние между дренажными узлами 60 м. Масса трубы по табл. 2 составляет 31 кг/м. Таким образом, масса трубы длиной 60 м составит 1860 кг.

Разогрев происходил по графику, указанному в табл. 4.

Таблица 4 . Режим разогрева паропроводов перегретого пара

Период
времени, ч
Среднее давление,
кг/см 2 изб.
Температура в конце
временного периода,°С
Энтальпия насыщенного
пара I " , ккал/кг
Скрытая теплота паро-
образования r, ккал/кг
Энтальпия перегретого
пара i, ккал/кг
Количество
конденсата, кг/ч
С 0 до 2 0,46 121 643,1 532,1 652,6 42,7
С 2 до 4 0,97 221 646,3 526,4 695 46,7
С 4 до 6 4,9 321 658,3 498,9 741,7 53,7
С 6 до 8 8,3 421 662,7 484,2 790,5 62,6
С 8 до 11 8,3 577 662,7 484,2 868,1 124,9

Для первых двух часов разогрева:

Для вторых двух часов:

Аналогично рассчитываются расходы пара для других периодов времени.

Чтобы эффективно выводить конденсат из паропроводов перегретого пара, нужно при установке конденсатоотводчиков правильно выбирать размеры колен-отстойников, а также учитывать рекомендации по их обвязке.

Возникает вопрос, нужна ли теплоизоляция колен-отстойников, патрубков конденсатоотводчиков и самих конденсатоотводчиков? Ответ — нет. Если изоляция не является обязательным требованием безопасности, эту часть паровой системы не нужно изолировать. Тогда немного конденсата будет непрерывно формироваться перед конденсатоотводчиком и проходить через него, продлевая срок его службы.

Типы конденсатоотводчиков для перегретого пара

Биметаллические

Биметаллический конденсатоотводчик настроен так, чтобы не открываться, пока конденсат не охладится до температуры ниже температуры насыщения. При данном давлении конденсатоотводчик останется закрытым до тех пор, пока в нём находится пар любой температуры. Когда температура пара повышается, тянущая сила биметаллических пластин увеличивается, повышая усилие уплотнения клапана. Перегретый пар стремится ещё больше увеличить это усилие. Биметаллический конденсатоотводчик хорошо работает при больших пусковых нагрузках и по этой причине является хорошим выбором для перегретого пара.

Во время работы на перегретом паре конденсатоотводчик может открыться, если конденсат в нём охладится ниже температуры насыщения. Если диаметр и длина колена-отстойника перед конденсатоотводчиком не будут соответствующими, то конденсат может пойти обратно в паропровод, вызывая его повреждение, а также трубопроводной арматуры и другого оборудования.


С опрокинутым поплавком

Гидрозатвор в конденсатоотводчике препятствует доступу пара к выпускному клапану, предотвращая утечку пара и обеспечивая продолжительный срок службы конденсатоотводчика. Выпускной клапан в верхней части делает его непроницаемым для посторонних частиц, но позволяет выводить воздух. Он справляется с большими пусковыми расходами и может приспособиться к малым рабочим расходам. Имеющиеся затруднения, связанные с его использованием на перегретом паре, относятся к необходимости сохранять гидрозатвор или производить заправку водой. Для этого необходимо применять конденсатоотводчики, разработанные специально для систем перегретого пара, и следить за их правильной обвязкой.

Правильная обвязка конденсатоотводчика с опрокинутым поплавком для перегретого пара показана на рис. 6. Определяя пропускную способность конденсатоотводчика для перегретого пара, следует рассчитывать её на пусковой расход без применения коэффициента запаса. Материалы корпуса должны выбираться исходя из максимального давления и температуры, включая перегрев.

Литература

  1. Вукалович М. П. Термодинамические свойства воды и водяного пара. — М.: Государственное научно-техническое издательство машиностроительной литературы «МАШГИЗ», 1955.
  2. Филоненко А. А. Пар и пароконденсатное хозяйство предприятия. От теории ближе к практике // Энергия и Менеджмент. — № 3. — 2013. — С. 22–25.
  3. Филоненко А. А. Пар и пароконденсатное хозяйство предприятия. От теории ближе к практике (продолжение) // Энергия и Менеджмент. — № 4–5. — 2013. — С. 66–68.

Диаметр паропровода определяется как:

Где: D – максимально потребляемое количество пара участком, кг/ч,

D= 1182,5 кг/ч (по графику работы машин и аппаратов для участка по производству творога) /68/;

- удельный объем насыщенного пара, м 3 /кг,
=0,84м 3 /кг;

- скорость движения пара в трубопроводе м/с, принимается 40м/с;

d =
=0,100 м=100 мм

К цеху подведен паропровод диаметром 100 мм, следовательно, его диаметра достаточно.

Паропроводы стальные, бесшовные, толщина стенки 2,5 мм

4.2.3. Расчет трубопровода для возврата конденсата

Диаметр трубопровода определяется по формуле:

d=
, м,

где Мк – количество конденсата, кг/ч;

Y – удельный объем конденсата, м 3 /кг, Y=0,00106 м 3 /кг;

W – скорость движения конденсата, м/с, W=1м/с.

Мк=0,6* D, кг/ч

Мк=0,6*1182,5=710 кг/ч

d=
=0,017м=17мм

Подбираем стандартный диаметр трубопровода dст=20мм.

4.2.3 Расчет изоляции тепловых сетей

С целью сокращения потерь тепловой энергии трубопроводы изолируют. Поведем расчет изоляции питающего паропровода с диаметром 110 мм.

Толщина изоляции для температуры окружающей среды 20ºС при заданной тепловой потере определяется по формуле:

, мм,

где d - диаметр неизолированного трубопровода, мм, d=100мм;

t - температура неизолированного трубопровода, ºС, t=180ºС;

λиз - коэффициент теплопроводности изоляции, Вт/м*К;

q- тепловые потери с одного погонного метра трубопровода, Вт/м.

q=0,151 кВт/м = 151 Вт/м²;

λиз=0,0696 Вт/м²*К.

В качестве изоляционного материала используется шлаковая вата.

=90 мм

Толщина изоляции не должна превышать 258 мм при диаметре труб 100 мм. Полученная δиз<258 мм.

Диаметр изолированного трубопровода составит d=200 мм.

4.2.5 Проверка экономии тепловых ресурсов

Тепловая энергия определяется по формуле:

t=180-20=160ºС

Рисунок 4.1 Схема трубопровода

Площадь трубопровода определяется по формуле:

R= 0,050 м, H= 1 м.

F=2*3,14*0,050*1=0,314м²

Коэффициент теплопередачи неизолированного трубопровода определяется по формуле:

,

где а 1 =1000 Вт/м²К, а 2 =8 Вт/м²К, λ=50 Вт/мК, δст=0,002м.

=7,93.

Q=7,93*0,314*160=398 Вт.

Коэффициент теплопроводности изолированного трубопрвода определяется по формуле:

,

где λиз=0,0696 Вт/мК.

=2,06

Площадь изолированного трубопровода определяется по формуле F=2*3,14*0,1*1=0,628м²

Q=2,06*0,628*160=206Вт.

Выполненные расчеты показали, что при использовании изоляции на паровом трубопроводе толщиной 90 мм экономиться 232 Вт тепловой энергии с 1 м трубопровода, то есть тепловая энергия расходуется рационально.

4.3 Электроснабжение

На заводе основными потребителями электроэнергии являются:

Электролампы (осветительная нагрузка);

Электроснабжение на предприятии от городской сети через трансформаторную подстанцию.

Система электроснабжения – трехфазный ток с промышленной частотой 50 Гц. Напряжение внутренней сети 380/220 В.

Расход энергии:

В час пиковой нагрузки – 750 кВт/ч;

Основные потребители энергии:

Технологическое оборудование;

Силовые установки;

Система освещения предприятия.

Распределительная сеть 380/220В от распределительных шкафов до машинных пускателей выполнена кабелем марки ЛВВР в стальных трубах, к двигательным проводам ЛВП. В качестве заземления используется нулевой провод питающей сети.

Предусматривается общее (рабочее и аварийное) и местное (ремонтное и аварийное) освещение. Местное освещение питается от понижающих трансформаторов малой мощности при напряжении 24В. Нормальное аварийное освещение питается от электрической сети на напряжении 220В. При полном исчезновении напряжении на шинах подстанции аварийное освещение питается от автономных источников («сухих аккумуляторов»), встроенных в светильники или от АГП.

Рабочее (общее) освещение предусматривается на напряжении 220В.

Светильники предусматриваются в исполнении, соответствующим характеру производства и условиям среды помещений, в которых они устанавливаются. В производственных помещениях предусматриваются с люминистцентными лампами, устанавливаемые на комплектных линиях из специальных подвесных коробов, располагаемых на высоте около 0,4м от пола.

Для эвакуационного освещения устанавливаются щитки аварийного освещения, подключаемые к другому (независимому) источнику освещения.

Производственное освещение осуществляется люминесцентными лампами и лампами накаливания.

Характеристики ламп накаливания, используемых для освещения производственных помещений:

1) 235- 240В 100Вт Цоколь Е27

2) 235- 240В 200Вт Цоколь Е27

3) 36В 60Вт Цоколь Е27

4) ЛСП 3902А 2*36 Р65ИЭК

Наименование светильников, используемых для освещения холодильных камер:

Cold Force 2*46WT26HF FO

Для уличного освещения используются:

1) RADBAY 1* 250 WHST E40

2) RADBAY SEALABLE 1* 250WT HIT/ HIE MT/ME E40

Обслуживание электросиловых и осветительных приборов осуществляется специальной службой предприятия.

4.3.1 Расчет нагрузки от технологического оборудования

Тип электродвигателя подбирается из каталога технологического оборудования.

Р ноп, КПД – паспортные данные электродвигателя, выбираются из электротехнических справочников /69/.

Р пр - присоединительная мощность

Р пр =Р ном /

Тип магнитного пускателя выбирается для каждого электродвигателя конкретно. Расчёт нагрузки от оборудования сведён в таблицу 4.4

4.3.2 Расчет осветительной нагрузки /69/

Аппаратный цех

Определим высоту подвеса светильников:

H р =Н 1 -h св -h р

Где: Н 1 - высота помещений, 4,8м;

h св - высота рабочей поверхности над полом, 0,8м;

h р - расчетная высота подвеса светильников, 1,2м.

H р =4,8-0,8-1,2=2,8м

Выбираем равномерную систему распределения светильников по углам прямоугольника.

Расстояние между светильниками:

L= (1,2÷1,4)·H р

L=1,3·2,8=3,64м

N св = S/L 2 (шт)

n св =1008/3,64м 2 =74 шт

Принимаем 74 светильника.

N л =n св ·N св

N л =73·2 = 146 шт

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*40/4,8*(24+40) = 3,125

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

Q=E min *S*k*Z/N л *η

к- коэффициент запаса, 1,5;

N л - число ламп, 146 шт.

Q=200*1,5*1008*1,1/146*0,5= 4340 лм

Выбираем лампу типа ЛД-80.

Творожный цех

Ориентировочное число осветительных ламп:

N св =S/L 2 (шт)

где: S- площадь освещенной поверхности, м 2 ;

L - расстояние между светильниками, м.

n св =864/3,64м 2 = 65,2 шт

Принимаем 66 светильников.

Определяем ориентировочное число ламп:

N л =n св ·N св

N св - количество ламп в светильнике

N л =66·2 = 132 шт

Определим коэффициент использования светового потока по таблице коэффициентов:

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*36/4,8*(24+36) = 3

Принимаем коэффициенты отражения света:

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

По индексу помещения и коэффициенту отражения выбираем коэффициент использования светового потока η=0,5

Определим световой поток одной лампы:

Q=E min *S*k*Z/N л *η

где: E min - минимальная освещённость, 200лк;

Z –коэффициент линейной освещённости 1,1;

к- коэффициент запаса, 1,5;

η – коэффициент использования светового потока, 0,5;

N л - число ламп, 238 шт.

Q=200*1,5*864*1,1/132*0,5 = 4356 лм

Выбираем лампу типа ЛД-80.

Цех по переработке сыворотки

n св =288/3,64 2 =21,73 шт

Принимаем 22 светильников.

Число ламп:

i=24*12/4,8*(24+12) =1,7

Световой поток одной лампы:

Q=200*1,5*288*1,1/56*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Приемное отделение

Ориентировочное число светильников:

n св =144/3,64м 2 =10,8 шт

Принимаем 12 светильников

Число ламп:

Коэффициент использования светового потока:

i=12*12/4,8*(12+12)=1,3

Световой поток одной лампы:

Q=150*1,5*144*1,1/22*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Установлена мощность одной осветительной нагрузки Р=N 1 *Р л (Вт)

Расчет осветительной нагрузки по методу удельных мощностей.

E min =150 лк W*100=8,2 Вт/м 2

Пересчет на освещенность 150 лк осуществляется по формуле

W= W*100* E min /100, Вт/м 2

W= 8,2*150/100 = 12,2 Вт/м 2

Определение суммарной мощности, необходимой для освещения (Р), Вт.

Аппаратный цех Р= 12,2*1008= 11712 Вт

Творожный цех Р= 12,2*864= 10540 Вт

Приемное отделение Р=12,2*144= 1757 Вт

Цех переработки сыворотки Р= 12,2* 288= 3514 Вт

Определяем число мощностей N л = Р/Р 1

Р 1 – мощность одной лампы

N л (аппаратного цеха) = 11712 / 80= 146

N л (творожного цеха) = 10540 / 80= 132

N л (приемного отделения) = 1756/ 80= 22

N л (цеха переработки сыворотки) = 3514/80 = 44

146+132+22+44= 344; 344*80= 27520 Вт.

Таблица 4.5 – Расчет силовой нагрузки

Наименование оборудования

Тип, марка

Количество

Тип электродвигателя

Мощность

КПД электродвига-

Тип магнит-

ного пуска

Номинальная Р

Электрическая

Р

Смесител

Фасовочный автомат

Дозатор Я1-ДТ-1

Фасовочный автомат

Фасовочный автомат

Линия производства твор

Таблица 4.6 – Расчёт осветительной нагрузки

Наименование помещений

Мин. освеще

Тип лампы

Кол-во ламп

Элект-ричес-

ность кВт

Удельная мощ-ность, Вт/м 2

Приемное отделение

Творожный цех

Аппаратный цех

Цех по переработке сыворотки

4.3.3 Проверочный расчет силовых трансформаторов

Активная мощность: Р тр =Р мак /η сети

где: Р мак =144,85 кВт (по графику «Расход мощности по часам суток»)

η сети =0,9

Р тр =144,85/0,9=160,94 кВт

Полная мощность, S, кВ·А

S=Р тр /соsθ

S=160,94/0,8=201,18 кВ·А

Для трансформаторной подстанции ТМ-1000/10 полная мощность составляет 1000кВ·А, полная мощность при существующей на предприятии нагрузки составляет 750кВ·А, но с учетом технического переоснащения творожного участка и организации переработки сыворотки необходимая мощность должна составлять: 750+201,18=951,18 кВ·А < 1000кВ·А.

Расход электроэнергии на 1 т вырабатываемой продукции:

Р=

где М- масса всех вырабатываемых продуктов, т;

М=28,675 т

Р=462,46/28,675=16,13 кВт*ч/т

Таким образом, из графика расхода электроэнергии по часам суток видно, что наибольшая мощность требуется в промежутке времени с 8 00 до 11 00 и с 16до 21часов. В этот период времени происходит приемка и обработка поступающего молока-сырья, производство изделий, розлив напитков. Небольшие скачки наблюдаются в период с 8до 11 , когда идет большинство процессов обработки молока для получения продуктов.

4.3.4 Расчет сечений и выбор кабелей.

Сечение кабеля находят по потере напряжения

S=2 PL*100/γ*ζ*U 2 , где:

L – длина кабеля, м.

γ – удельная проводимость меди, ОМ * м.

ζ – допустимые потери напряжения,%

U- напряжение сети, В.

S= 2*107300*100*100 / 57,1*10 3 *5*380 2 =0,52 мм 2 .

Вывод: сечение используемого предприятием кабеля марки ВВР 1,5 мм 2 – следовательно, имеющийся кабель обеспечит участки электроэнергией.

Таблица 4.7 – Почасовой расход электроэнергии на выработку продуктов

Часы суток

Насос 50-1Ц7,1-31

Счетчик Взлет-ЭР

Охладитель

Насос Г2-ОПА

ППОУ ЦКРП-5-МСТ

Сепаратор-нормализатор ОСЦП-5

Счетчик-расходомер

Творогоизготовитель ТИ

Продолжение таблицы 4.7

Часы суток

Мембранный насос

Обезвоживатель

Стабилизатор

параметров

Насос П8-ОНБ-1

Автомат фасовочный SAN/T

Измельчитель-смеситель-250

Автомат фасовочный

Фарш мешалка

Продолжение таблицы 4.7

Часы суток

Сепаратор-

Осветлитель

Ванна ВДП

Насос-дозатор НРДМ

Установка

Ванна ВДП

Насос погружной Seepex

Трубчатый

пастеризатор

Продолжение таблицы 4.7

Часы суток

Автомат фасовочный

Приемное отделение

Аппаратный цех

Творожный цех

Цех переработки сыворотки

Окончание таблицы 4.7

Часы суток

Неучтенные потери 10%

График расхода электроэнергии.