Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина). Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба - это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах. Также используется такая величина как условный диаметр или условный проход - номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN). Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д. Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов. Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды. В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования. Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы. И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды. Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости. Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где:
ρ — плотность жидкости;
v — скорость потока;
L — характерная длина элемента потока;
μ - динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re<2300 наблюдается так называемый ламинарный поток, при котором жидкость движется тонкими слоями, почти не смешивающимися друг с другом, при этом наблюдается постепенное увеличение скорости потока по направлению от стенок трубы к ее центру. Дальнейшее увеличение числа Рейнольдса приводит к дестабилизации такой структуры потока, и значениям 23004000 наблюдается уже устойчивый режим, характеризуемый беспорядочным изменением скорости и направления потока в каждой отдельной его точке, что в сумме дает выравнивание скоростей потока по всему объему. Такой режим называется турбулентным. Число Рейнольдса зависит от задаваемого насосом напора, вязкости среды при рабочей температуре, а также размерами и формой сечения трубы, через которую проходит поток.

Профиль скоростей в потоке
ламинарный режим переходный режим турбулентный режим
Характер течения
ламинарный режим переходный режим турбулентный режим

Критерий Рейнольдса является критерием подобия для течения вязкой жидкости. То есть с его помощью возможно моделирование реального процесса в уменьшенном размере, удобном для изучения. Это крайне важно, поскольку зачастую бывает крайне сложно, а иногда и вовсе невозможно изучать характер потоков жидкости в реальных аппаратах из-за их большого размера.

Расчет трубопровода. Расчет диаметра трубопровода

Если трубопровод не теплоизолированный, то есть возможен обмен тепла между перемещаемой и окружающей средой, то характер потока в нем может изменяться даже при постоянной скорости (расходе). Такое возможно, если на входе перекачиваемая среда имеет достаточно высокую температуру и течет в турбулентном режиме. По длине трубы температура перемещаемой среды будет падать вследствие тепловых потерь в окружающую среду, что может повлечь за собой смену режима потока на ламинарный или переходный. Температура, при которой происходит смена режима, называется критической температурой. Значение вязкости жидкости напрямую зависит от температуры, поэтому для подобных случаев используют такой параметр как критическая вязкость, соответствующая точке смены режима потока при критическом значении критерия Рейнольдса:

v кр = (v·D)/Re кр = (4·Q)/(π·D·Re кр)

где:
ν кр - критическая кинематическая вязкость;
Re кр - критическое значение критерия Рейнольдса;
D - диаметр трубы;
v - скорость потока;
Q - расход.

Еще одним важным фактором является трение, возникающее между стенками трубы и движущимся потоком. При этом коэффициент трения во многом зависит от шероховатости стенок трубы. Взаимосвязь между коэффициентом трения, критерием Рейнольдса и шероховатостью устанавливается диаграммой Муди, позволяющей определить один из параметров, зная два других.


Формула Коулбрука-Уайта также применяется для вычисления коэффициента трения турбулентного потока. На основании этой формулы возможно построение графиков, по которым устанавливается коэффициент трения.

(√λ ) -1 = -2·log(2,51/(Re·√λ ) + k/(3,71·d))

где:
k - коэффициент шероховатости трубы;
λ - коэффициент трения.

Существуют также и другие формулы приблизительного расчета потерь на трение при напорном течении жидкости в трубах. Одним из наиболее часто используемых уравнений в этом случае считается уравнение Дарси-Вейсбаха. Оно основывается на эмпирических данных и используется в основном при моделировании систем. Потери на трение - это функция скорости жидкости и сопротивления трубы движению жидкости, выражаемой через значение шероховатости стенок трубопровода.

∆H = λ · L/d · v²/(2·g)

где:
ΔH - потери напора;
λ - коэффициент трения;
L - длина участка трубы;
d - диаметр трубы;
v - скорость потока;
g - ускорение свободного падения.

Потеря давления вследствие трения для воды рассчитывают по формуле Хазена — Вильямса.

∆H = 11,23 · L · 1/С 1,85 · Q 1,85 /D 4,87

где:
ΔH - потери напора;
L - длина участка трубы;
С - коэффициент шероховатости Хайзена-Вильямса;
Q - расход;
D - диаметр трубы.

Давление

Рабочее давление трубопровода - это набольшее избыточное давление, обеспечивающее заданный режим работы трубопровода. Решение о размере трубопровода и количестве насосных станций обычно принимается, опираясь на рабочее давление труб, производительность насоса и расходы. Максимальное и минимальное давление трубопровода, а также свойства рабочей среды, определяют расстояние между насосными станциями и требуемую мощность.

Номинальное давление PN - номинальная величина, соответствующая максимальному давлению рабочей среды при 20 °C, при котором возможна продолжительная эксплуатация трубопровода с заданными размерами.

При увеличении температуры нагрузочная способность трубы понижается, как и допустимое избыточное давление вследствие этого. Значение pe,zul показывает максимальное давление (изб) в трубопроводной системе при увеличении рабочей температуры.

График допустимых избыточных давлений:


Расчет падения давления в трубопроводе

Расчет падения давления в трубопроводе производят по формуле:

∆p = λ · L/d · ρ/2 · v²

где:
Δp - перепад давления на участке трубы;
L - длина участка трубы;
λ - коэффициент трения;
d - диаметр трубы;
ρ - плотность перекачиваемой среды;
v - скорость потока.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров - основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости - это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы. Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур. Вязкость представляет собой сопротивляемость среды течению и измеряется в сантистоксах сСт. Вязкость определяет не только выбор насоса, но также расстояние между насосными станциями.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба - наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
колено 180° отвод 30° переходной штуцер наконечник

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Расчет размеров трубопровода при изменении температуры

Расчет изменения линейных размеров трубопровода при изменении температуры производят по формуле:

∆L = a·L·∆t

a - коэффициент температурного удлинения, мм/(м°C) (см. таблицу ниже);
L - длина трубопровода (расстояние между неподвижными опорами), м;
Δt - разница между макс. и мин. температурой перекачиваемой среды, °С.

Таблица линейного расширения труб из различных материалов

Приведенные числа представляют собой средние показатели для перечисленных материалов и для расчета трубопровода из иных материалов данные из этой таблицы не должны браться за основу. При расчете трубопровода рекомендуется использовать коэффициент линейного удлинения, указываемый заводом-изготовителем трубы в сопровождающей технической спецификации или техпаспорте.

Температурное удлинение трубопроводов устраняют как применением специальных компенсационных участков трубопровода, так и при помощи компенсаторов, которые могут состоять из упругих или подвижных частей.

Компенсационные участки состоят из упругих прямых частей трубопровода, расположенных перпендикулярно друг к другу и крепящихся при помощи отводов. При температурном удлинении увеличение одной части компенсируется деформацией изгиба другой части на плоскости или деформацией изгиба и кручения в пространстве. Если трубопровод сам компенсирует температурное расширение, то это называется самокомпенсацией.

Компенсация происходит также и благодаря эластичным отводам. Часть удлинения компенсируется эластичностью отводов, другую часть устраняют за счет упругих свойств материала участка, находящегося за отводом. Компенсаторы устанавливают там, где не возможно использование компенсирующих участков или когда самокомпенсация трубопровода недостаточна.

По конструктивному исполнению и принципу работы компенсаторы бывают четырех видов: П-образные, линзовые, волнистые, сальниковые. На практике довольно часто применяются плоские компенсаторы с L-, Z- или U-образной формой. В случае пространственных компенсаторов, они представляют собой обычно 2 плоских взаимно перпендикулярных участка и имеют одно общее плечо. Эластичные компенсаторы производят из труб или эластичных дисков, либо сильфонов.

Определение оптимального размера диаметра трубопроводов

Оптимальный диаметр трубопровода может быть найден на основе технико-экономических расчетов. Размеры трубопровода, включая размеры и функциональные возможности различных компонентов, а также условия, при которых должна происходить эксплуатация трубопровода, определяет транспортирующая способность системы. Трубы большего размера подходят для более интенсивного массового потока среды при условии, что другие компоненты в системы подобраны и рассчитаны под эти условия надлежащим образом. Обычно, чем длиннее отрезок магистральной трубы между насосными станциями, тем требуется больший перепад давления в трубопроводе. Кроме того, изменение физических характеристик перекачиваемой среды (вязкость и т.д.), также может оказать большое влияние на давление в магистрали.

Оптимальный размер - наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q - расход перекачиваемой жидкости;
d - диаметр трубопровода;
v - скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Перекачиваемая среда Диапазон оптимальных скоростей в трубопроводе, м/с
Жидкости Движение самотеком:
Вязкие жидкости 0,1 - 0,5
Маловязкие жидкости 0,5 - 1
Перекачивание насосом:
Всасывающая сторона 0,8 - 2
Нагнетательная сторона 1,5 - 3
Газы Естественная тяга 2 - 4
Малое давление 4 - 15
Большое давление 15 - 25
Пары Перегретый пар 30 - 50
Насыщенный пар под давлением:
Более 105 Па 15 - 25
(1 - 0,5) · 105 Па 20 - 40
(0,5 - 0,2) · 105 Па 40 - 60
(0,2 - 0,05) · 105 Па 60 - 75

Отсюда получаем формулу для расчета оптимального диаметра трубы:

d о = √((4·Q) / (π·v о ))

Q - заданный расход перекачиваемой жидкости;
d - оптимальный диаметр трубопровода;
v - оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы (обозначим K 1). При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости (обозначим K 2).

Для трубопроводов больших диаметров затраты K 1 будут выше, а расходы во время эксплуатации K 2 ниже. Если сложить значения K 1 и K 2 , то получим общие минимальные затраты K и оптимальный диаметр трубопровода. Затраты K 1 и K 2 в этом случае приведены в один и тот же временной промежуток.

Расчет (формула) капитальных затрат для трубопровода

K 1 = (m·C M ·K M)/n

m - масса трубопровода, т;
C M - стоимость 1 т, руб/т;
K M - коэффициент, повышающий стоимость монтажных работ, например 1,8;
n - срок службы, лет.

Указанные затраты на эксплуатацию, связанны с потреблением энергии:

K 2 = 24·N·n дн ·C Э руб/год

N - мощность, кВт;
n ДН - кол-во рабочих дней в году;
С Э - затраты на один кВт-ч энергии, руб/кВт *ч.

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Наименование Уравнение Возможные ограничения
Поток жидкости и газа под давлением
Потеря напора на трение
Дарси-Вейсбаха

d = 12·[(0,0311·f·L·Q 2)/(h f)] 0,2

Q - объемный расход, гал/мин;
d - внутренний диаметр трубы;
hf - потеря напора на трение;
L - длина трубопровода, футы;
f - коэффициент трения;
V - скорость потока.
Уравнение общего потока жидкости

d = 0,64·√(Q/V)

Q - объемный расход, гал/мин
Размер всасывающей линии насоса для ограничения потерь напора на трение

d = √(0,0744·Q)

Q - объемный расход, гал/мин
Уравнение общего потока газа

d = 0,29·√((Q·T)/(P·V))

Q - объемный расход, фут³/мин
T - температура, K
Р - давление фунт/дюйм² (абс);
V - скорость
Поток самотеком
Уравнение Маннинга для расчета диаметра трубы для максимального потока

d = 0,375

Q - объемный расход;
n - коэффициент шероховатости;
S - уклон.
Число Фруда соотношение силы инерции и силы тяжести

Fr = V / √[(d/12) · g]

g - ускорение свободного падения;
v - скорость течения;
L - длину трубы или диаметр.
Пар и испарение
Уравнение определения диаметра трубы для пара

d = 1,75·√[(W·v_g·x) / V]

W - массовый расход;
Vg - удельный объём насыщенного пара;
x - качество пара;
V - скорость.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение - функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода. Оптимальный размер трубы, например, для серной кислоты ограничивает скорость среды до значения, при котором не допускается эрозия стенок в трубных коленах, чтобы таким образом не допустить повреждения структуры трубы.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

пузырьковый поток (горизонтальный) снарядный поток (горизонтальный) волновой поток дисперсный поток

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода. Помимо этого на величину движущей силы влияют значения давлений в начальной и конечной точке. Увеличение перепада давления влечет за собой увеличение скорости потока жидкости, что, в свою очередь, позволяет подбирать трубопровод меньшего диаметра, и наоборот.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода. Окончательный подбор труб осуществляется с использованием дифференциального давления, учитывающего все вышеперечисленные факторы, а не основывается только лишь на перепаде высот начальной и конечной точки.

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример - явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода. Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке. Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д. Размер участка трубопровода, на котором происходит отбор проб, обычно зависит от типа анализируемой рабочей среды и расположения точки отбора пробы.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть. Таким образом, размер лини отбора проб для анализа суспензий во многом зависит от размера твердых частиц и характеристик среды. Аналогичные выводы применимы и к вязким жидкостям.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость. При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении. Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно. Перемешивание обеспечивается благодаря оборудованию, такому как резервуар с мешалкой, в то время как в трубопроводах, это достигается за счет поддержания турбулентных условий движения потока среды.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода - это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу. Но прежде чем выбрать какой-либо способ ремонта необходимо провести тщательное изучение причины возникновения утечки. В отдельных случаях может потребоваться не просто ремонт, а смена маршрута трубы для предотвращения повторного ее повреждения.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника. Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов. Далее устанавливают необходимое оборудование и осуществляют непосредственно ремонт. Ремонтные работы проводят на поврежденном участке, освобожденном от среды и без давления. По окончании ремонта заглушки открывают и восстанавливают целостность трубопровода.

Параметры расхода воды:

  1. Величина диаметра трубы, которая также определяет дальнейшую пропускную способность.
  2. Величину стенок труб, которая после определит внутренне давление в системе.

Единственное, что не влияет на расход – это длина коммуникаций.

Если диметр известен, расчет можно провести по таким данным:

  1. Конструкционный материал для трубостроительства.
  2. Технология, влияющая на процесс сборки трубопровода.

Характеристики влияют на давление внутри систему водоснабжение и определяют расход воды.

Если вы ищете ответ на вопрос, как определить расход воды, то вы должны усвоить две формулы расчета, определяющие параметры использования.

  1. Формула для расчета на сутки - Q=ΣQ×N/100. Где ΣQ – годовое суточное использование воды на 1 жителя, а N – количество жителей в здании.
  2. Формула для расчета на час - q=Q×K/24. Где Q – суточный расчет, а К – соотношение по СНиПу неравномерное потребление (1.1-1.3).

Эти нехитрые расчеты смогут помочь определить расход, который покажет нужды и потребности данного дома. Есть таблицы, которыми можно воспользоваться в обсчете жидкости.

Справочные данные в расчете воды

При использовании таблиц вам следует просчитать все краны, ванные и водонагреватели в доме. Таблица СНиП 2.04.02-84.

Стандартные нормы потребления:

  • 60 литров – 1 человек.
  • 160 литров – на 1 человека, если в доме обустроен более хороший водопровод.
  • 230 литров – на 1 человека, в доме, где установлен качественный водопровод и ванная.
  • 350 литров – на 1 человек с водопроводом, встроенной техникой, ванной, туалетом.

Зачем рассчитывать воду по СНиПу?

Как определить расход воды на каждый день – не самая востребованная информация среди обычных жителей дома, но специалистам по установке трубопроводов эта информация требуется еще меньше. И по большей мере им требуется знать каков диаметр соединения, и какое давление в системе оно поддерживает.

Но чтоб определить эти показатели необходимо знать, сколько необходимо воды в трубопроводе.

Формула, помогающая определить диаметр трубы и скорость течения жидкости:

Стандартная скорость жидкость в системе без напора составляет 0,7 м/с и 1,9 м/с. А скорость от внешнего источника, например бойлера, определяют по паспорту источника. При знании диаметра определяется скорость потока в коммуникациях.

Расчет потери напора воды

Потерю расхода воды вычисляют с учетом падения давления по одной формуле:

В формуле L – обозначает длин соединения, а λ – потери трения, ρ – ковкость.

Показатель трения меняется от таких значений:

  • уровень шероховатости покрытия;
  • препятствие в аппаратуре на запорных местах;
  • скорость течения жидкости;
  • протяженность трубопровода.

Простота расчета

Зная потери давления, скорость жидкости в трубах и объем необходимой воды, как определить расход воды и величины трубопровода становится намного понятнее. Но для того чтоб избавится от долгих расчетов, можно воспользоваться особой таблицей.

Где D – диаметр трубы, q – потребительский расход воды, а V – скорость воды, і – курс. Для определения значений их необходимо найти в таблице и соединить по прямой линии. Также определяют расход и диаметр, при этом учитывая наклон и скорость. Следовательно, самым простым способом расчета является использование таблиц и графика.

Прокладка трубопровода – дело не очень сложное, но достаточно хлопотное. Одной из самых сложных проблем при этом является расчет пропускной способности трубы, которая напрямую влияет на эффективность и работоспособность конструкции. В данной статье речь пойдет о том, как рассчитывается пропускная способность трубы.

Пропускная способность – это один из важнейших показателей любой трубы. Несмотря на это, в маркировке трубы этот показатель указывается редко, да и смысла в этом немного, ведь пропускная способность зависит не только от габаритов изделия, но и от конструкции трубопровода. Именно поэтому данный показатель приходится рассчитывать самостоятельно.

Способы расчета пропускной способности трубопровода

  1. Внешний диаметр . Данный показатель выражается в расстоянии от одной стороны наружной стенки до другой стороны. В расчетах этот параметр имеет обозначение Дн. Внешний диаметр труб всегда отображается в маркировке.
  2. Диаметр условного прохода . Это значение определяется как диаметр внутреннего сечения, который округляется до целых чисел. При расчете величина условного прохода отображается как Ду.


Расчет проходимости трубы может осуществляться по одному из методов, выбирать который необходимо в зависимости от конкретных условий прокладки трубопровода:

  1. Физические расчеты . В данном случае используется формула пропускной способности трубы, позволяющая учесть каждый показатель конструкции. На выборе формулы влияет тип и назначение трубопровода – например, для канализационных систем есть свой набор формул, как и для остальных видов конструкций.
  2. Табличные расчеты . Подобрать оптимальную величину проходимости можно при помощи таблицы с примерными значениями, которая чаще всего используется для обустройства разводки в квартире. Значения, указанные в таблице, довольно размыты, но это не мешает использовать их в расчетах. Единственный недостаток табличного метода заключается в том, что в нем рассчитывается пропускная способность трубы в зависимости от диаметра, но не учитываются изменения последнего вследствие отложений, поэтому для магистралей, подверженных возникновению наростов, такой расчет будет не лучшим выбором. Чтобы получить точные результаты, можно воспользоваться таблицей Шевелева, учитывающей практически все факторы, воздействующие на трубы. Такая таблица отлично подходит для монтажа магистралей на отдельных земельных участках.
  3. Расчет при помощи программ . Многие фирмы, специализирующиеся на прокладке трубопроводов, используют в своей деятельности компьютерные программы, позволяющие точно рассчитать не только пропускную способность труб, но и массу других показателей. Для самостоятельных расчетов можно воспользоваться онлайн-калькуляторами, которые, хоть и имеют несколько большую погрешность, доступны в бесплатном режиме. Хорошим вариантом большой условно-бесплатной программы является «TAScope», а на отечественном пространстве самой популярной является «Гидросистема», которая учитывает еще и нюансы монтажа трубопроводов в зависимости от региона.

Расчет пропускной способности газопроводов

Проектирование газопровода требует достаточно высокой точности – газ имеет очень большой коэффициент сжатия, из-за которого возможны утечки даже через микротрещины, не говоря уже о серьезных разрывах. Именно поэтому правильный расчет пропускной способности трубы, по которой будет транспортироваться газ, очень важен.

Если речь идет о транспортировке газа, то пропускная способность трубопроводов в зависимости от диаметра будет рассчитываться по следующей формуле:

  • Qmax = 0.67 Ду2 * p,

Где р – величина рабочего давления в трубопроводе, к которой прибавляется 0,10 МПа;

Ду – величина условного прохода трубы.

Указанная выше формула расчета пропускной способности трубы по диаметру позволяет создать систему, которая будет работать в бытовых условиях.


В промышленном строительстве и при выполнении профессиональных расчетов применяется формула иного вида:

  • Qmax = 196,386 Ду2 * p/z*T,

Где z – коэффициент сжатия транспортируемой среды;

Т – температура транспортируемого газа (К).

Чтобы избежать проблем, профессионалам приходится учитывать при расчете трубопровода еще и климатические условия в том регионе, где он будет проходить. Если наружный диаметр трубы окажется меньше, чем давление газа в системе, то трубопровод с очень большой вероятностью будет поврежден в процессе эксплуатации, в результате чего произойдет потеря транспортируемого вещества и повысится риск взрыва на ослабленном отрезке трубы.

При большой необходимости можно определить проходимость газовой трубы с помощью таблицы, в которой описана взаимозависимость между наиболее распространенными диаметрами труб и рабочим уровнем давления в них. По большому счету, у таблиц есть тот же недостаток, который имеет рассчитанная по диаметру пропускная способность трубопровода, а именно – невозможность учесть воздействие внешних факторов.

Расчет пропускной способности канализационных труб

При проектировании канализационной системы нужно в обязательном порядке рассчитывать пропускную способность трубопровода, которая напрямую зависит от его вида (канализационные системы бывают напорными и безнапорными). Для осуществления расчетов используются гидравлические законы. Сами расчеты могут проводиться как при помощи формул, так и посредством соответствующих таблиц.

Для гидравлического расчета канализационной системы требуются следующие показатели:

  • Диаметр труб – Ду;
  • Средняя скорость движения веществ – v;
  • Величина гидравлического уклона – I;
  • Степень наполнения – h/Ду.


Как правило, при проведении расчетов вычисляются только два последних параметра – остальные после этого можно будет определить без особых проблем. Величина гидравлического уклона обычно равна уклону земли, который обеспечит движение стоков со скоростью, необходимой для самоочищения системы.

Скорость и предельный уровень наполнения бытовой канализации определяются по таблице, которую можно выписать так:

  1. 150-250 мм - h/Ду составляет 0,6, а скорость – 0,7 м/с.
  2. Диаметр 300-400 мм - h/Ду составляет 0,7, скорость – 0,8 м/с.
  3. Диаметр 450-500 мм - h/Ду составляет 0,75, скорость – 0,9 м/с.
  4. Диаметр 600-800 мм - h/Ду составляет 0,75, скорость – 1 м/с.
  5. Диаметр 900+ мм - h/Ду составляет 0,8, скорость – 1,15 м/с.

Для изделия с небольшим сечением имеются нормативные показатели минимальной величины уклона трубопровода:

  • При диаметре 150 мм уклон не должен быть менее 0,008 мм;
  • При диаметре 200 мм уклон не должен быть менее 0,007 мм.

Для расчета объема стоков используется следующая формула:

  • q = a*v,

Где а – площадь живого сечения потока;

v – скорость транспортировки стоков.


Определить скорость транспортировки вещества можно по такой формуле:

  • v= C√R*i,

где R – величина гидравлического радиуса,

С – коэффициент смачивания;

i – степень уклона конструкции.

Из предыдущей формулы можно вывести следующую, которая позволит определить значение гидравлического уклона:

  • i=v2/C2*R.

Чтобы вычислить коэффициент смачивания, используется формула такого вида:

  • С=(1/n)*R1/6,

Где n – коэффициент, учитывающий степень шероховатости, который варьируется в пределах от 0,012 до 0,015 (зависит от материала изготовления трубы).

Значение R обычно приравнивают к обычному радиусу, но это актуально лишь в том случае, если труба заполняется полностью.

Для других ситуаций используется простая формула:

  • R=A/P,

Где А – площадь сечения потока воды,

Р – длина внутренней части трубы, находящейся в непосредственном контакте с жидкостью.

Табличный расчет канализационных труб

Определять проходимость труб канализационной системы можно и при помощи таблиц, причем расчеты будут напрямую зависеть от типа системы:

  1. Безнапорная канализация . Для расчета безнапорных канализационных систем используются таблицы, содержащие в себе все необходимые показатели. Зная диаметр устанавливаемых труб, можно подобрать в зависимости от него все остальные параметры и подставить их в формулу (прочитайте также: " "). Кроме того, в таблице указан объем проходящей через трубу жидкости, который всегда совпадает с проходимостью трубопровода. При необходимости можно воспользоваться таблицами Лукиных, в которых указана величина пропускной способности всех труб с диаметром в диапазоне от 50 до 2000 мм.
  2. Напорная канализация . Определять пропускную способность в данном типе системы посредством таблиц несколько проще – достаточно знать предельную степень наполнения трубопровода и среднюю скорость транспортировки жидкости. Читайте также: " ".


Таблица пропускной способности полипропиленовых труб позволяет узнать все необходимые для обустройства системы параметры.

Расчет пропускной способности водопровода

Водопроводные трубы в частном строительстве применяются чаще всего. На систему водоснабжения в любом случае приходится серьезная нагрузка, поэтому расчет пропускной способности трубопровода обязателен, ведь он позволяет создать максимально комфортные условия эксплуатации будущей конструкции.

Для определения проходимости водопроводных труб можно использовать их диаметр (прочитайте также: " "). Конечно, данный показатель не является основой для расчета проходимости, но его влияние нельзя исключать. Увеличение внутреннего диаметра трубы прямо пропорционально ее проходимости – то есть, толстая труба почти не препятствует движению воды и меньше подвержена наслоению различных отложений.


Впрочем, есть и другие показатели, которые также необходимо учитывать. Например, очень важным фактором является коэффициент трения жидкости о внутреннюю часть трубы (для разных материалов имеются собственные значения). Также стоит учитывать длину всего трубопровода и разность давлений в начале системы и на выходе. Немаловажным параметром является и количество различных переходников, присутствующих в конструкции водопровода.

Пропускная способность полипропиленовых труб водопровода может рассчитываться в зависимости от нескольких параметров табличным методом. Одним из них является расчет, в котором главным показателем является температура воды. При повышении температуры в системе происходит расширение жидкости, поэтому трение повышается. Для определения проходимости трубопровода нужно воспользоваться соответствующей таблицей. Также есть таблица, позволяющая определить проходимость в трубах в зависимости от давления воды.


Самый точный расчет воды по пропускной способности трубы позволяют осуществить таблицы Шевелевых. Помимо точности и большого числа стандартных значений, в данных таблицах имеются формулы, позволяющие рассчитать любую систему. Данный материал в полном объеме описывает все ситуации, связанные с гидравлическими расчетами, поэтому большинство профессионалов в данной области чаще всего используют именно таблицы Шевелевых.

Основными параметрами, которые учитываются в этих таблицах, являются:

  • Внешний и внутренний диаметры;
  • Толщина стенок трубопровода;
  • Период эксплуатации системы;
  • Общая протяженность магистрали;
  • Функциональное назначение системы.

Заключение

Расчет пропускной способности труб может выполняться разными способами. Выбор оптимального способа расчета зависит от большого количества факторов – от размеров труб до назначения и типа системы. В каждом случае есть более и менее точные варианты расчета, поэтому найти подходящий сможет как профессионал, специализирующийся на прокладке трубопроводов, так и хозяин, решивший самостоятельно проложить магистраль у себя дома.


Расчет потребления воды производится перед строительством трубопроводов и является составной частью гидродинамических вычислений. При сооружении магистральных и промышленных трубопроводов данные расчеты производятся с помощью специальных программ. При строительстве трубопровода бытового назначения своими руками можно провести расчет самостоятельно, но стоит учитывать, что полученный результат не будет максимально точным. Как рассчитать параметр потребления воды, читайте далее.

Факторы, оказывающие влияние на пропускную способность

Основным фактором, по которому производится расчет системы трубопроводов, является пропускная способность. На данный показатель влияет множество различных параметров, наиболее существенными из которых являются:

  1. давление в существующем трубопроводе (в магистральной сети, если строящийся трубопровод будет подключен к внешнему источнику). Методика расчета с учетом давления носит более сложный, но и более точный характер, так как именно от давления зависит такой показатель, как пропускная способность, то есть способность пропускать определенное количество воды за определенную единицу времени;
  2. общая длина трубопровода. Чем больше этот параметр, тем большее количество потерь проявляется в ходе его использования и, соответственно, для исключения падения давления требуется применять трубы большего диаметра. Поэтому данный фактор также учитывается специалистами;
  3. материал, из которого изготовлены трубы. Если для сооружения или иной магистрали используются металлические трубы, то неровная внутренняя поверхность и возможность постепенного засорения отложениями, содержащимися в воде, приведут к снижению пропускной способности и, соответственно, небольшому увеличению диаметра. При использовании пластиковых труб (ПВХ), полипропиленовых труб и так возможность засорения отложениями практически исключена. Более того, внутренняя поверхность пластиковых труб более гладкая;

  1. сечение труб. По внутреннему сечению трубы можно самостоятельно сделать предварительный расчет.

Есть и иные факторы, которые учитываются специалистами. Но для данной статьи они не имеют существенного значения.

Методика расчета диаметра в зависимости от сечения труб

Если при расчете трубопровода необходимо учитывать все перечисленные факторы, производить вычисления рекомендуется при помощи специальных программ. Если для сооружения системы достаточно предварительных расчетов, то они проводятся в следующей последовательности:

  • предварительное определение количества расхода воды всеми членами семьи;
  • подсчет оптимального размера диаметра.

Как рассчитать расход воды в доме

Определить самостоятельно количество потребляемой холодной или горячей воды в доме можно несколькими методами:

  • по показания прибора учета. Если при вводе трубопровода в дом установлены счетчики, то определить расход воды в сутки на одного человека не составляет проблем. Причем при наблюдении в течение нескольких дней можно получить достаточно точные параметры;

  • по установленным нормам, определенными специалистами. Норматив потребления воды на человека установлен для отдельных видов помещений с наличием/отсутствием определенных условий;

  • по формуле.

Чтобы определить общее количество расхуемой воды в помещении, необходимо произвести расчет для каждого сантехнического узла (ванны, душевой кабинки, смесителя и так далее) в отдельности. Формула расчета:

Qs = 5 x q0 x Р, где

Qs – показатель, определяющий величину расхода;

q0 — установленная норма;

Р – коэффициент, при помощи которого учитывается возможность использования нескольких видов сантехнических приборов одновременно.

Показатель q0 определяется в зависимости от вида сантехнического оборудования по следующей таблице:

Вероятность Р определяется по следующей формуле:

Р = L x N1 / q0 x 3600 x N2 , где

L — пиковый расход воды за 1 час;

N1 — количество человек, пользующихся сантехническими приборами;

q0 — установленные нормативы для отдельной сантехнической единицы;

N2 — количество установленных приборов сантехники.

Определять расход воды без учета вероятности недопустимо, так как одновременное использование приборов сантехники приводит к увеличению мощности потока.

Произведем расчет воды на конкретном примере. Необходимо определить расход воды по следующим параметрам:

  • в доме проживает 5 человек;
  • установлены 6 единиц сантехнического оборудования: ванна, унитаз, раковина на кухне, стиральная машина и посудомоечная машина, установленные на кухне, душевая кабина;
  • пиковый расход воды за 1 час в соответствии со СНиП устанавливается равным 5,6 л/с.

Определяем размер вероятности:

Р = 5,6 х 4 / 0,25 х 3600 х 6 = 0,00415

Определяем расход волы для ванны, кухни и туалетной комнаты:

Qs (ванны) = 4 х 0,25 х 0,00518 = 0,00415 (л/с)

Qs (кухни) = 4 х 0,12 х 0,00518 = 0,002 (л/с)

Qs (туалета) = 4 х 0,4 х 0,00518 = 0,00664 (л/с)

Расчет оптимального сечения

Для определения сечения используется следующая формула:

Q = (πd²/4)хW , где

Q – полученное расчетным путем количество расходуемой воды;

d – искомый диаметр;

W – скорость движения воды в системе.

Путем простейших математических действий можно вывести, что

d = √(4Q/πW)

Показатель W можно получить из таблицы:

Представленные в таблице показатели применяются для приблизительных расчетов. Для более получения более точных параметров используется сложная математическая формула.

Определим диаметр труб для ванны, кухни и туалета по параметрам, представленным в рассматриваемом примере:

d (для ванной комнаты) = √(4 х 0,00415 / (3,14 х 3)) = 0,042 (м)

d (для кухни) = √(4 х 0,002 / (3,14 х 3)) = 0,03 (м)

d (для туалета) = √(4 х 0,00664 / (3,14 х 3)) = 0,053 (м)

Для определения сечения труб принимается наибольший расчетный показатель. С учетом небольшого запаса в данном примере можно провести проводку водоснабжения трубами с сечением 55 мм.

Как произвести расчет при помощи специальной полупрофессиональной программы, смотрите на видео.

Такая характеристика как зависит от нескольких факторов. Прежде всего, это диаметр трубы, а также тип жидкости, и другие показатели.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

При расчете любых систем, основанных на циркуляции жидкости по трубам, возникает необходимость точного определения пропускной способности труб . Это метрическая величина, которая характеризует количество жидкости, протекающее по трубам за определенный промежуток времени. Данный показатель напрямую связан с материалом, из которого изготовлены трубы.

Если взять, к примеру, трубы из пластика , то они отличаются практически одинаковой пропускной способностью на протяжении всего срока эксплуатации. Пластик, в отличие от металла, не склонен к возникновению коррозии, поэтому постепенного нарастания отложений в нем не наблюдается.

Что касается труб из металла , то их пропускная способность уменьшается год за годом. Из-за появления ржавчины происходит отслойка материала внутри труб. Это приводит к шероховатости поверхности и образованию еще большего налета. Особенно быстро этот процесс происходит в трубах с горячей водой.

Далее приведена таблица приближенных значений которая создана для облегчения определения пропускной способности труб внутриквартирной разводки. В данной таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы.

Таблица пропускной способности труб для жидкостей, газа, водяного пара.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

Вода трубопроводной магистрали

Вода системы центрального отопления

Вода напорной системы в линии трубопровода

Гидравлическая жидкость

до 12м/сек

Масло линии трубопровода

Масло в напорной системе линии трубопровода

Пар в отопительной системе

Пар системы центрального трубопровода

Пар в отопительной системе с высокой температурой

Воздух и газ в центральной системе трубопровода

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Расчет пропускной способности труб.

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

Наиболее популярные способы расчета:

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание - материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.

Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.

Пример расчета пропускной способности трубопровода.

Длина трубопровода - важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.