Определение понятия напора
Повышение давления насосом называется напором. Под напором насоса (H) понимается удельная механическая работа, передаваемая насосом перекачиваемой жидкости.

H = E/G [m]

E = механическая энергия [Н м]
G = вес перекачиваемой жидкости [Н]

При этом напор, создаваемый насосом, и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:

10 м в.ст. = 1 бар = 100 000 Па = 100 кПа

На горизонтальной оси (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с]. Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса H 0 при нулевой подаче.

Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.

Различная крутизна при идентичном корпусе и рабочем колесе насосов (например, в зависимости от частоты вращения мотора)

Форма характеристик насоса
На рисунке показана различная крутизна характеристик насоса, которая может зависеть, в частности, от частоты вращения мотора.

При этом крутизна характеристики и смещение рабочей точки влияет также на изменение подачи и напора:
пологая кривая
– большее изменение подачи
при незначительном изменении напора
крутая кривая
– большое изменение подачи
при значительном изменении напора

Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб.
Потеря давления отображается на графике в виде характеристики системы. Для этого используется тот же график, что и для характеристики насоса.

Характеристика системы

Форма характеристики показывает следующие зависимости:

Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.
При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично. Поэтому график будет иметь форму параболы. Эту связь можно представить в виде следующего уравнения:

H1/H2 = (Q1/Q2) 2

Выводы
Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. В качестве примера можно взять истечение воды из отдельного водопроводного крана.
При начальном давлении 2 бара, что соответствует напору насоса прим. 20 м, вода вытекает из крана DN 1/2 с расходом 2 м3/ч.
Чтобы увеличить подачу в два раза, необходимо повысить начальное давление на входе с 2 до 8 бар.

Рабочая точка

Точка, в которой пересекаются характеристики насоса и системы, является рабочей точкой системы и насоса . Это означает, что в этой точке имеет место равновесие между полезной мощностью насоса и мощностью, потребляемой трубопроводной сетью. Напор насоса всегда равен сопротивлению системы. От этого зависит также подача, которая может быть обеспечена насосом.

При этом следует иметь в виду, что подача не должна быть ниже определенного минимального значения. В противном случае это может вызвать слишком сильное повышение температуры в насосной камере и, как следствие, повреждение насоса. Во избежание этого следует неукоснительно соблюдать инструкции производителя.

Рабочая точка за пределами характеристики насоса может вызвать повреждение мотора. По мере изменения подачи в процессе работы насоса также постоянно смещается рабочая точка. Найти оптимальную расчетную рабочую точку в соответствии с максимальными эксплуатационными требованиями входит в задачи проектировщика.

Такими требованиями являются:
для циркуляционных насосов систем отопления - потребление тепла зданием,
для установок повышения напора - пиковый расход для всех мест водоразбора.
Все остальные рабочие точки находятся слева от данной расчетной рабочей точки.

На двух рисунках показано влияние изменения гидродинамического сопротивления на смещение рабочей точки. Смещение рабочей точки по направлению влево от расчетного положения неизбежно вызывает увеличение напора насоса. В результате этого возникает шум в клапанах. Регулирование напора и подачи в соответствии с потребностью может производиться применением насосов с частотным преобразователем. При этом существенно сокращаются эксплуатационные расходы.

Гюлия 2016-07-20 11:27:21

Очень хорошо все изложено.Спасибо.


[Ответить] [Ответить с цитатой] [Отменить ответ]
нина 2017-12-17 06:38:29

Спасибо большое, чайнику помогли разобраться, писал хороший методист. Раньше все учебники были такие, до 60-х. Писали по-русски


[Ответить] [Ответить с цитатой] [Отменить ответ]
Игорь Лещинский 2018-12-05 12:18:54

Прошу вас помочь разобраться со следующим вопросом. Может ли насос EBARA type 2CD 70/15 выполнять роль повысительного насоса на 4 многоквартирных дома, которым по 60 лет, один дом ив котором в 7 подъездов разной этажности (от 4 до 7) и еще 3 дома 4-х этажных по 3 подъезда? Как мне говорят с разных сторон разные граждане - Есть насосы повысительные и есть циркуляционные. Циркуляционные полноценно не могут повысительные заменить. У нас в подвале 7-этажного дома стоит насос, который питет еще 3 здания, 4-х этажных. Стоит насос EBARA type 2CD 70/15/ Его поставила управляющая компания взамен советского еще, котрый хорошо качал, но был очень шумным. Но давление воды как-то не очень улучшилось.


[Ответить] [Ответить с цитатой] [Отменить ответ]
Страницы:

Зачем нужны подобные расчеты

При составлении плана по возведению большого коттеджа, имеющего несколько ванных комнат, частной гостиницы, организации пожарной системы, очень важно обладать более-менее точной информацией о транспортирующих возможностях имеющейся трубы, беря в учет ее диаметр и давление в системе. Все дело в колебаниях напора во время пика потребления воды: такие явления довольно серьезно влияют на качество предоставляемых услуг.


Кроме того, если водопровод не оснащен водосчетчиками, то при оплате за услуги коммунальных служб в расчет берется т.н. «проходимость трубы». В таком случае вполне логично выплывает вопрос о применяемых при этом тарифах.

При этом важно понимать, что второй вариант не касается частных помещений (квартир и коттеджей), где при отсутствии счетчиков при начислении оплаты учитывают санитарные нормы: обычно это до 360 л/сутки на одного человека.

От чего зависит проходимость трубы

От чего же зависит расход воды в трубе круглого сечения? Складывается впечатление, что поиск ответа не должен вызывать сложностей: чем большим сечением обладает труба, тем больший объем воды она сможет пропустить за определенное время. При этом вспоминается также давление, ведь чем выше водяной столб, тем с большей скоростью вода будет продавливаться внутри коммуникации. Однако практика показывает, что это далеко не все факторы, влияющие на расход воды.

Кроме них, в учет приходится брать также следующие моменты:

  1. Длина трубы . При увеличении ее протяженности вода сильнее трется об ее стенки, что приводит к замедлению потока. Действительно, в самом начале системы вода испытывает воздействие исключительно давлением, однако важно и то, как быстро у следующих порций появится возможность войти внутрь коммуникации. Торможение же внутри трубы зачастую достигает больших значений.
  2. Расход воды зависит от диаметра в куда более сложной степени, чем это кажется на первый взгляд. Когда размер диаметра трубы небольшой, стенки сопротивляются водному потоку на порядок больше, чем в более толстых системах. Как результат, при уменьшении диаметра трубы снижается ее выгода в плане соотношения скорости водного потока к показателю внутренней площади на участке фиксированной длины. Если сказать по-простому, толстый водопровод гораздо быстрее транспортирует воду, чем тонкий.
  3. Материал изготовления . Еще один важный момент, напрямую влияющий на быстроту движения воды по трубе. К примеру, гладкий пропилен способствует скольжению воды в гораздо больше мере, чем шероховатые стальные стенки.
  4. Продолжительность службы . Со временем на стальных водопроводах появляется ржавчина. Кроме этого для стали, как и для чугуна, характерно постепенно накапливать известковые отложения. Сопротивляемость водному потоку трубы с отложениями гораздо выше, чем новых стальных изделий: эта разница иногда доходит до 200 раз. Кроме того, зарастание трубы приводит к уменьшению ее диаметра: даже если не брать в расчет возросшее трение, проходимость ее явно падает. Важно также заметить, что изделия из пластика и металлопластика подобных проблем не имеют: даже спустя десятилетия интенсивной эксплуатации уровень их сопротивляемости водным потокам остается на первоначальном уровне.
  5. Наличие поворотов, фитингов, переходников, вентилей способствует дополнительному торможению водных потоков.

Все вышеперечисленные факторы приходится учитывать, ведь речь идет не о каких-то маленьких погрешностях, а о серьезной разнице в несколько раз. В качестве вывода можно сказать, что простое определение диаметра трубы по расходу воды едва ли возможно.

Новая возможность расчетов расхода воды

Если использование воды осуществляется посредством крана, это значительно упрощает задачу. Главное в таком случае, чтобы размеры отверстия излияния воды были намного меньше диаметра водопровода. В таком случае применима формула расчета воды по сечению трубы Торричелли v^2=2gh, где v - быстрота протекания сквозь небольшое отверстие, g - ускорение свободного падения, а h - высота столба воды над краном (отверстие, имеющее сечение s, за единицу времени пропускает водный объем s*v). При этом важно помнить, что термин «сечение» применяется не для обозначения диаметра, а его площади. Для ее расчета используют формулу pi*r^2.


Если столб воды имеет высоту в 10 метров, а отверстие – диаметр 0,01 м, расход воды через трубу при давлении в одну атмосферу вычисляется таким образом: v^2=2*9.78*10=195,6. После извлечения квадратного корня выходит v=13,98570698963767. После округления, чтобы получить более простой показатель скорости, получается 14м/с. Сечение отверстия, имеющее диаметр 0,01 м, вычисляется так: 3,14159265*0,01^2=0,000314159265 м2. В итоге выходит, что максимальный расход воды через трубу соответствует 0,000314159265*14=0,00439822971 м3/с (немного меньше, чем 4,5 литра воды/секунду). Как можно увидеть, в данном случае расчет воды по сечению трубы провести довольно просто. Также в свободном доступе имеются специальные таблицы с указанием расходы воды для самых популярных сантехнических изделий, при минимальном значении диаметра водопроводной трубы.


Как уже можно понять, универсального несложного способа, чтобы вычислить диаметр трубопровода в зависимости от расхода воды, не существует. Однако определенные показатели для себя вывести все-же можно. Особенно это касается случаев, если система обустроена из пластиковых или металлопластиковых труб, а потребление воды осуществляется кранами с малым сечением выхода. В отдельных случаях такой метод расчета применим на стальных системах, но речь идет прежде всего о новых водопроводах, которые не успели покрыться внутренними отложениями на стенках.

31132 0 22

Пропускная способность трубы: просто о сложном

Как меняется пропускная способность трубы в зависимости от диаметра? Какие факторы, помимо поперечного сечения, влияют на этот параметр? Наконец, как рассчитать, пусть приблизительно, проходимость водопровода при известном диаметре? В статье я постараюсь дать на эти вопросы максимально простые и доступные ответы.

Наша задача — научиться рассчитывать оптимальное сечение водопроводных труб.

Зачем это нужно

Гидравлический расчет позволяет получить оптимальное минимальное значение диаметра водопровода.

С одной стороны, денег при строительстве и ремонте всегда катастрофически не хватает, а цена погонного метра труб растет с увеличением диаметра нелинейно. С другой — заниженное сечение водопровода приведет к чрезмерному падению напора на концевых приборах из-за его гидравлического сопротивления.

При расходе на промежуточном приборе падение напора на концевом приведет к тому, что температура воды при открытых кранах ХВС и ГВС резко изменится. В результате вас либо окатит ледяной водой, либо ошпарит кипятком.

Ограничения

Я намеренно ограничу область рассматриваемых задач водопроводом небольшого частного дома. Причины две:

  1. Газы и жидкости разной вязкости ведут себя при транспортировке по трубопроводу абсолютно по-разному. Рассмотрение поведения природного и сжиженного газа, нефти и прочих сред увеличило бы объем этого материала в несколько раз и увело бы нас далеко от моей специализации — сантехники;
  2. В случае большого здания с многочисленными сантехническими приборами для гидравлического расчета водопровода придется рассчитывать вероятность одновременного использования нескольких точек водоразбора. В небольшом доме расчет выполняется для пикового потребления всеми имеющимися приборами, что сильно упрощает задачу.

Факторы

Гидравлический расчет системы водоснабжения — это поиск одной из двух величин:

В реальных условиях (при проектировании водопровода) куда чаще приходится выполнять вторую задачу.

Бытовая логика подсказывает, что максимальный расход воды через трубопровод определяется его диаметром и давлением на входе. Увы, реальность гораздо сложнее. Дело в том, что у трубы есть гидравлическое сопротивление : попросту говоря, поток тормозит за счет трения о стенки. Причем материал и состояние стенок предсказуемо влияют на степень торможения.

Вот полный список факторов, влияющих на производительность водопроводной трубы:

  • Давление в начале водопровода (читай — давление в трассе);
  • Уклон трубы (изменение ее высоты над условным уровнем грунта в начале и конце);

  • Материал стенок. Полипропилен и полиэтилен имеют куда меньшую шероховатость, чем сталь и чугун;
  • Возраст трубы. Со временем сталь обрастает ржавчиной и известковыми отложениями, которые не только увеличивают шероховатость, но и снижают внутренний просвет трубопровода;

Это не относится к стеклянным, пластиковым, медным, оцинкованным и металлополимерным трубам. Они и через 50 лет эксплуатации находятся в состоянии новых. Исключение — заиливание водопровода при большом количестве взвесей и отсутствии фильтров на входе.

  • Количество и угол поворотов ;
  • Изменения диаметра водопровода;
  • Наличие или отсутствие сварных швов, грата от пайки и соединительных фитингов;

  • Запорная арматура . Даже полнопроходные шаровые краны оказывают движению потока определенное сопротивление.

Любой расчет пропускной способности трубопровода будет весьма приблизительным. Волей-неволей нам придется использовать усредненные коэффициенты, типичные для близких к нашим условий.

Закон Торричелли

Живший в начале 17 века Эванджелиста Торричелли известен как ученик Галилео Галилея и автор самого понятия атмосферного давления. Ему принадлежит и формула, описывающая расход воды, выливающейся из сосуда через отверстие известных размеров.

Для работоспособности формулы Торричелли необходимо:

  1. Чтобы нам был известен напор воды (высота водяного столба над отверстием);

Одна атмосфера при земной гравитации способна поднять водяной столб на 10 метров. Поэтому давление в атмосферах пересчитывается в напор простым умножением на 10.

  1. Чтобы отверстие было существенно меньше диаметра сосуда , исключая, таким образом, потерю напора за счет трения о стенки.

На практике формула Торрричелли позволяет рассчитать расход воды через трубу с внутренним сечением известных размеров при известном мгновенном напоре во время расхода. Проще говоря: чтобы воспользоваться формулой, нужно установить манометр перед краном или рассчитать падение напора на водопроводе при известном давлении в трассе.

Сама формула выглядит так: v^2=2gh. В ней:

  • v — скорость потока на выходе из отверстия в метрах в секунду;
  • g — ускорение падения (для нашей планеты оно равно 9,78 м/с^2);
  • h — напор (высота водяного столба над отверстием).

Чем это поможет в нашей задаче? А тем, что расход жидкости через отверстие (та самая пропускная способность) равен S*v , где S — площадь сечения отверстия, а v — скорость потока из приведенной выше формулы.

Капитан Очевидность подсказывает: зная площадь сечения, нетрудно определить внутренний радиус трубы. Как известно, площадь круга вычисляется как π*r^2, где π округленно берется равным 3,14159265.

В этом случае формула Торричелли будет иметь вид v^2=2*9,78*20=391,2. Квадратный корень из 391,2 округленно равен 20. Значит, вода будет выливаться из отверстия со скоростью 20 м/с.

Вычисляем диаметр отверстия, через которое изливается поток. Переведя диаметр в единицы СИ (метры), получаем 3,14159265*0,01^2=0,0003141593. А теперь вычисляем расход воды: 20*0,0003141593=0,006283186, или 6,2 литра в секунду.

Обратно в реальность

Уважаемый читатель, рискну предположить, что у вас перед смесителем не установлен манометр. Очевидно, что для более точного гидравлического расчета нужны какие-то дополнительные данные.

Обычно расчетная задача решается от обратного: при известных расходе воды через сантехнические приборы, длине водопровода и его материале подбирается диаметр, обеспечивающий падение напора до приемлемых значений. Ограничивающим фактором выступает скорость потока.

Справочные данные

Нормой скорости потока для внутренних водопроводов считаются 0,7 — 1,5 м/с. Превышение последнего значения приводит к появлению гидравлических шумов (в первую очередь — на изгибах и фитингах).

Нормы расхода воды для сантехприборов несложно отыскать в нормативной документации. В частности, их приводит приложение к СНиП 2.04.01-85. Чтобы избавить читателя от длительных поисков, я приведу здесь эту таблицу.

В таблице приведены данные для смесителей с аэраторами. Их отсутствие уравнивает расход через смесители мойки, умывальника и душевой кабины с расходом через смеситель при наборе ванны.

Напомню, что если вы хотите своими руками рассчитать водопровод частного дома, суммируйте расход воды для всех установленных приборов . Если эта инструкция не соблюдается, вас будут ждать сюрпризы вроде резкого падения температуры в душе при открытии крана горячей воды на .

Если в здании присутствует пожарный водопровод, к плановому расходу добавляется 2,5 л/с на каждый гидрант. Для пожарного водопровода скорость потока ограничивается значением в 3 м/с : при пожаре гидравлические шумы — это последнее, что будет нервировать жильцов.

При расчете напора обычно исходят из того, что на крайнем от ввода приборе он должен быть не менее 5 метров, что соответствует давлению 0,5 кгс/см2. Часть сантехнических приборов (проточные водонагреватели, заливные клапаны автоматических стиральных машин и т.д.) просто не срабатывают, если давление в водопроводе ниже 0,3 атмосфер. Кроме того, приходится учитывать гидравлические потери на самом приборе.

На фото — проточный водонагреватель Atmor Basic. Он включает нагрев лишь при давлении 0,3 кгс/см2 и выше.

Расход, диаметр, скорость

Напомню, что они увязываются между собой двумя формулами:

  1. Q = SV . Расход воды в кубометрах в секунду равен площади сечения в квадратных метрах, умноженной на скорость потока в метрах в секунду;
  2. S = π r ^2. Площадь сечения высчитывается как произведение числа «пи» и квадрата радиуса.

Где взять значения радиуса внутреннего сечения?

  • У стальных труб он с минимальной погрешностью равен половине ДУ (условного прохода, которым маркируется трубный прокат);
  • У полимерных, металлополимерных и т.д. внутренний диаметр равен разности между наружным, которым маркируются трубы, и удвоенной толщиной стенки (она тоже обычно присутствует в маркировке). Радиус, соответственно, представляет собой половину внутреннего диаметра.

  1. Внутренний диаметр равен 50-3*2=44 мм, или 0,044 метра;
  2. Радиус составит 0,044/2=0,022 метра;
  3. Площадь внутреннего сечения будет равной 3,1415*0,022^2=0,001520486 м2;
  4. При скорости потока 1,5 метра в секунду расход будет равным 1,5*0,001520486=0,002280729 м3/с, или 2,3 литра в секунду.

Потеря напора

Как вычислить, сколько напора теряется на водопроводе с известными параметрами?

Простейшая формула расчета падения напора имеет вид H = iL(1+K). Что означают переменные в ней?

  • H — заветное падение напора в метрах;
  • i — гидравлический уклон метра водопровода ;
  • L — длина водопровода в метрах;
  • K — коэффициент , позволяющий упростить расчет падения напора на запорной арматуре и . Он привязан к назначению водопроводной сети.

Где взять значения этих переменных? Ну, кроме длины трубы — рулетку-то пока никто не отменял.

Коэффициент К принимается равным:

С гидравлическим уклоном картина куда сложнее. Сопротивление, оказываемое трубой потоку, зависит от:

  • Внутреннего сечения;
  • Шероховатости стенок;
  • Скорости потока.

Список значений 1000i (гидравлического уклона на 1000 метров водопровода) можно найти в таблицах Шевелева, которые, собственно, и служат для гидравлического расчета. Объем таблиц слишком велик для статьи, поскольку они приводят значения 1000i для всех возможных диаметров, скоростей потока и материалов с поправкой на срок службы.

Вот небольшой фрагмент таблицы Шевелева для пластмассовой трубы размером 25 мм.

Автор таблиц приводит значения падения напора не для внутреннего сечения, а для стандартных размеров, которыми маркируются трубы, с поправкой на толщину стенок. Однако таблицы были изданы в 1973 году, когда соответствующий сегмент рынка еще не сформировался.
При расчете учтите, что для металлопластика лучше брать значения, соответствующие трубе на шаг меньшего размера.

Давайте, пользуясь этой таблицей, вычислим падение напора на полипропиленовой трубе диаметром 25 мм и длиной 45 метров. Условимся, что мы проектируем водопровод хозяйственно-бытового назначения.

  1. При максимально близкой к 1,5 м/с скорости потока (1,38 м/с) значение 1000i будет равным 142,8 метра;
  2. Гидравлический уклон одного метра трубы будет равным 142,8/1000=0,1428 метра;
  3. Коэффициент поправки для бытовых водопроводов равен 0,3;
  4. Формула в целом приобретет вид H=0,1428*45(1+0,3)=8,3538 метра. Значит, на конце водопровода при расходе воды 0,45 л/с (значение из левого столбца таблицы) давление упадет на 0,84 кгс/см2 и при 3 атмосферах на входе составит вполне приемлемые 2,16 кгс/см2.

Этим значением можно воспользоваться, чтобы определить расход согласно формуле Торричелли . Способ расчета с примером приведен в соответствующем разделе статьи.

Кроме того, чтобы вычислить максимальный расход через водопровод с известными характеристиками, можно выбрать в столбце «расход» полной таблицы Шевелева такое значение, при котором давление в конце трубы не упадет ниже 0,5 атмосферы .

Заключение

Уважаемый читатель, если приведенная инструкция, несмотря на предельную упрощенность, все же показались вам утомительной — просто воспользуйтесь одним из многочисленных онлайн-калькуляторов . Как всегда, дополнительную информацию можно найти в видео в этой статье. Я буду признателен за ваши дополнения, поправки и комментарии. Успехов, камрады!

31 июля 2016г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

Для измерения расхода методом перепада давления существуют много различных видов устройств и приспособлений, которыми пользуются для преобразования перепада давления в сигнал расхода.

Устройства преобразования дельта «Р» в сигнал расхода

Тремя самыми распространенными устройствами являются манометры, мембраны и сильфоны. При помощи манометра можно снимать показание перепада давления непосредственно с прибора. Мембраны же и сильфоны можно подсоединять к контрольно-измерительным приборам.

Манометр является одним из самых распространенных приборов, применяемых для контроля и измерения перепада давления. На изображенной схеме манометром измеряют перепад давления, созданный при помощи диафрагмы. Один конец манометра подсоединен к отбору высокой стороны, расположенному вверх по потоку относительно диафрагмы. Другой конец манометра подсоединен к отбору низкой стороны, расположенному вниз по потоку относительно диафрагмы. Во время того, как поток жидкости, газа или пара проходит через диафрагму, манометр воспринимает разницу в давлении, созданную диафрагмой, и показывает эту разницу посредством высоты жидкости в трубке. Шкала манометра позволяет снимать показание этой измеренной дельты «Р» фактически непосредственно с прибора.

Защита манометра от попадания жидкости, газа или пара из трубопровода обычно осуществляется в измерительных системах с помощью изолирующих мембран или с помощью каких-либо других способов.


На рисунке выше изображена схема, на которой мембрана выступает в роли устройства определения дельта «Р». На этой схеме мембрана помещена в камеру, в которую имеются входы с двух сторон. Один вход подсоединен к отбору высокой стороны, а другой вход подсоединен к отбору низкой стороны. Индикаторный рычаг закреплен в верхней части камеры, а его нижний конец крепится к мембране. Разница давлений внутри камеры приводит в движение мембрану, которая, в свою очередь, приводит в движение стрелку, заставляя ее отклоняться то в одну, то в другую сторону. По мере увеличения или уменьшения величины перепада давления механическое движение мембраны передается на индикаторный рычаг.


Это схема, в которой для преобразования величины дельты «Р» в механическое движение использованы два гофрированных сильфона. Детали изображенной схемы включают в себя: два соединенных вместе сильфона с перегородкой между ними, рычаг, индикаторную стрелку и шкалу.

Сильфон, обозначенный буквой «А», подсоединяется к отбору высокой стороны, а сильфон под буквой «В» подсоединяется к отбору низкой стороны. Сильфоны помещены в камеру. Перегородка же между сильфонами может свободно перемещаться. С помощью рычага, закрепленного на перегородке, механическое движение сильфонов передается на индикаторную стрелку, которая может перемещаться вдоль шкалы.

Формула для расчета расхода на основе перепада давления

Формула для расчета расхода звучит так - величина расхода прямо пропорциональна квадратному корню отношения, измеренному в данный момент показанию дельты-Р к величине максимальной дельты-Р в процентном выражении.


Для того, чтобы преобразовать фактическое показание дельты-Р в показание расхода требуются три основные величины: величина максимального расхода в системе, величина максимального перепада давления при максимальном расходе и измеренное показание перепада давления. Упрощенной формулой, в которой для преобразования перепада давления в расход использованы эти три величины, будет следующее выражение:

Этой формулой будет легче воспользоваться, если разбить ее на три последовательных действия:

1) Разделить измеренное показание перепада давления на величину максимального перепада давления;

2) Вычислить квадратный корень от результата, полученного в первом действии;

3) Умножить полученный результат квадратного корня на величину максимального расхода. Полученный в третьем действии результат равен фактическому расходу в измеряемой системе.

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина). Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба - это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах. Также используется такая величина как условный диаметр или условный проход - номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN). Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д. Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов. Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды. В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования. Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы. И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды. Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости. Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где:
ρ — плотность жидкости;
v — скорость потока;
L — характерная длина элемента потока;
μ - динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re<2300 наблюдается так называемый ламинарный поток, при котором жидкость движется тонкими слоями, почти не смешивающимися друг с другом, при этом наблюдается постепенное увеличение скорости потока по направлению от стенок трубы к ее центру. Дальнейшее увеличение числа Рейнольдса приводит к дестабилизации такой структуры потока, и значениям 23004000 наблюдается уже устойчивый режим, характеризуемый беспорядочным изменением скорости и направления потока в каждой отдельной его точке, что в сумме дает выравнивание скоростей потока по всему объему. Такой режим называется турбулентным. Число Рейнольдса зависит от задаваемого насосом напора, вязкости среды при рабочей температуре, а также размерами и формой сечения трубы, через которую проходит поток.

Профиль скоростей в потоке
ламинарный режим переходный режим турбулентный режим
Характер течения
ламинарный режим переходный режим турбулентный режим

Критерий Рейнольдса является критерием подобия для течения вязкой жидкости. То есть с его помощью возможно моделирование реального процесса в уменьшенном размере, удобном для изучения. Это крайне важно, поскольку зачастую бывает крайне сложно, а иногда и вовсе невозможно изучать характер потоков жидкости в реальных аппаратах из-за их большого размера.

Расчет трубопровода. Расчет диаметра трубопровода

Если трубопровод не теплоизолированный, то есть возможен обмен тепла между перемещаемой и окружающей средой, то характер потока в нем может изменяться даже при постоянной скорости (расходе). Такое возможно, если на входе перекачиваемая среда имеет достаточно высокую температуру и течет в турбулентном режиме. По длине трубы температура перемещаемой среды будет падать вследствие тепловых потерь в окружающую среду, что может повлечь за собой смену режима потока на ламинарный или переходный. Температура, при которой происходит смена режима, называется критической температурой. Значение вязкости жидкости напрямую зависит от температуры, поэтому для подобных случаев используют такой параметр как критическая вязкость, соответствующая точке смены режима потока при критическом значении критерия Рейнольдса:

v кр = (v·D)/Re кр = (4·Q)/(π·D·Re кр)

где:
ν кр - критическая кинематическая вязкость;
Re кр - критическое значение критерия Рейнольдса;
D - диаметр трубы;
v - скорость потока;
Q - расход.

Еще одним важным фактором является трение, возникающее между стенками трубы и движущимся потоком. При этом коэффициент трения во многом зависит от шероховатости стенок трубы. Взаимосвязь между коэффициентом трения, критерием Рейнольдса и шероховатостью устанавливается диаграммой Муди, позволяющей определить один из параметров, зная два других.


Формула Коулбрука-Уайта также применяется для вычисления коэффициента трения турбулентного потока. На основании этой формулы возможно построение графиков, по которым устанавливается коэффициент трения.

(√λ ) -1 = -2·log(2,51/(Re·√λ ) + k/(3,71·d))

где:
k - коэффициент шероховатости трубы;
λ - коэффициент трения.

Существуют также и другие формулы приблизительного расчета потерь на трение при напорном течении жидкости в трубах. Одним из наиболее часто используемых уравнений в этом случае считается уравнение Дарси-Вейсбаха. Оно основывается на эмпирических данных и используется в основном при моделировании систем. Потери на трение - это функция скорости жидкости и сопротивления трубы движению жидкости, выражаемой через значение шероховатости стенок трубопровода.

∆H = λ · L/d · v²/(2·g)

где:
ΔH - потери напора;
λ - коэффициент трения;
L - длина участка трубы;
d - диаметр трубы;
v - скорость потока;
g - ускорение свободного падения.

Потеря давления вследствие трения для воды рассчитывают по формуле Хазена — Вильямса.

∆H = 11,23 · L · 1/С 1,85 · Q 1,85 /D 4,87

где:
ΔH - потери напора;
L - длина участка трубы;
С - коэффициент шероховатости Хайзена-Вильямса;
Q - расход;
D - диаметр трубы.

Давление

Рабочее давление трубопровода - это набольшее избыточное давление, обеспечивающее заданный режим работы трубопровода. Решение о размере трубопровода и количестве насосных станций обычно принимается, опираясь на рабочее давление труб, производительность насоса и расходы. Максимальное и минимальное давление трубопровода, а также свойства рабочей среды, определяют расстояние между насосными станциями и требуемую мощность.

Номинальное давление PN - номинальная величина, соответствующая максимальному давлению рабочей среды при 20 °C, при котором возможна продолжительная эксплуатация трубопровода с заданными размерами.

При увеличении температуры нагрузочная способность трубы понижается, как и допустимое избыточное давление вследствие этого. Значение pe,zul показывает максимальное давление (изб) в трубопроводной системе при увеличении рабочей температуры.

График допустимых избыточных давлений:


Расчет падения давления в трубопроводе

Расчет падения давления в трубопроводе производят по формуле:

∆p = λ · L/d · ρ/2 · v²

где:
Δp - перепад давления на участке трубы;
L - длина участка трубы;
λ - коэффициент трения;
d - диаметр трубы;
ρ - плотность перекачиваемой среды;
v - скорость потока.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров - основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости - это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы. Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур. Вязкость представляет собой сопротивляемость среды течению и измеряется в сантистоксах сСт. Вязкость определяет не только выбор насоса, но также расстояние между насосными станциями.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба - наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
колено 180° отвод 30° переходной штуцер наконечник

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Расчет размеров трубопровода при изменении температуры

Расчет изменения линейных размеров трубопровода при изменении температуры производят по формуле:

∆L = a·L·∆t

a - коэффициент температурного удлинения, мм/(м°C) (см. таблицу ниже);
L - длина трубопровода (расстояние между неподвижными опорами), м;
Δt - разница между макс. и мин. температурой перекачиваемой среды, °С.

Таблица линейного расширения труб из различных материалов

Приведенные числа представляют собой средние показатели для перечисленных материалов и для расчета трубопровода из иных материалов данные из этой таблицы не должны браться за основу. При расчете трубопровода рекомендуется использовать коэффициент линейного удлинения, указываемый заводом-изготовителем трубы в сопровождающей технической спецификации или техпаспорте.

Температурное удлинение трубопроводов устраняют как применением специальных компенсационных участков трубопровода, так и при помощи компенсаторов, которые могут состоять из упругих или подвижных частей.

Компенсационные участки состоят из упругих прямых частей трубопровода, расположенных перпендикулярно друг к другу и крепящихся при помощи отводов. При температурном удлинении увеличение одной части компенсируется деформацией изгиба другой части на плоскости или деформацией изгиба и кручения в пространстве. Если трубопровод сам компенсирует температурное расширение, то это называется самокомпенсацией.

Компенсация происходит также и благодаря эластичным отводам. Часть удлинения компенсируется эластичностью отводов, другую часть устраняют за счет упругих свойств материала участка, находящегося за отводом. Компенсаторы устанавливают там, где не возможно использование компенсирующих участков или когда самокомпенсация трубопровода недостаточна.

По конструктивному исполнению и принципу работы компенсаторы бывают четырех видов: П-образные, линзовые, волнистые, сальниковые. На практике довольно часто применяются плоские компенсаторы с L-, Z- или U-образной формой. В случае пространственных компенсаторов, они представляют собой обычно 2 плоских взаимно перпендикулярных участка и имеют одно общее плечо. Эластичные компенсаторы производят из труб или эластичных дисков, либо сильфонов.

Определение оптимального размера диаметра трубопроводов

Оптимальный диаметр трубопровода может быть найден на основе технико-экономических расчетов. Размеры трубопровода, включая размеры и функциональные возможности различных компонентов, а также условия, при которых должна происходить эксплуатация трубопровода, определяет транспортирующая способность системы. Трубы большего размера подходят для более интенсивного массового потока среды при условии, что другие компоненты в системы подобраны и рассчитаны под эти условия надлежащим образом. Обычно, чем длиннее отрезок магистральной трубы между насосными станциями, тем требуется больший перепад давления в трубопроводе. Кроме того, изменение физических характеристик перекачиваемой среды (вязкость и т.д.), также может оказать большое влияние на давление в магистрали.

Оптимальный размер - наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q - расход перекачиваемой жидкости;
d - диаметр трубопровода;
v - скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Перекачиваемая среда Диапазон оптимальных скоростей в трубопроводе, м/с
Жидкости Движение самотеком:
Вязкие жидкости 0,1 - 0,5
Маловязкие жидкости 0,5 - 1
Перекачивание насосом:
Всасывающая сторона 0,8 - 2
Нагнетательная сторона 1,5 - 3
Газы Естественная тяга 2 - 4
Малое давление 4 - 15
Большое давление 15 - 25
Пары Перегретый пар 30 - 50
Насыщенный пар под давлением:
Более 105 Па 15 - 25
(1 - 0,5) · 105 Па 20 - 40
(0,5 - 0,2) · 105 Па 40 - 60
(0,2 - 0,05) · 105 Па 60 - 75

Отсюда получаем формулу для расчета оптимального диаметра трубы:

d о = √((4·Q) / (π·v о ))

Q - заданный расход перекачиваемой жидкости;
d - оптимальный диаметр трубопровода;
v - оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы (обозначим K 1). При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости (обозначим K 2).

Для трубопроводов больших диаметров затраты K 1 будут выше, а расходы во время эксплуатации K 2 ниже. Если сложить значения K 1 и K 2 , то получим общие минимальные затраты K и оптимальный диаметр трубопровода. Затраты K 1 и K 2 в этом случае приведены в один и тот же временной промежуток.

Расчет (формула) капитальных затрат для трубопровода

K 1 = (m·C M ·K M)/n

m - масса трубопровода, т;
C M - стоимость 1 т, руб/т;
K M - коэффициент, повышающий стоимость монтажных работ, например 1,8;
n - срок службы, лет.

Указанные затраты на эксплуатацию, связанны с потреблением энергии:

K 2 = 24·N·n дн ·C Э руб/год

N - мощность, кВт;
n ДН - кол-во рабочих дней в году;
С Э - затраты на один кВт-ч энергии, руб/кВт *ч.

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Наименование Уравнение Возможные ограничения
Поток жидкости и газа под давлением
Потеря напора на трение
Дарси-Вейсбаха

d = 12·[(0,0311·f·L·Q 2)/(h f)] 0,2

Q - объемный расход, гал/мин;
d - внутренний диаметр трубы;
hf - потеря напора на трение;
L - длина трубопровода, футы;
f - коэффициент трения;
V - скорость потока.
Уравнение общего потока жидкости

d = 0,64·√(Q/V)

Q - объемный расход, гал/мин
Размер всасывающей линии насоса для ограничения потерь напора на трение

d = √(0,0744·Q)

Q - объемный расход, гал/мин
Уравнение общего потока газа

d = 0,29·√((Q·T)/(P·V))

Q - объемный расход, фут³/мин
T - температура, K
Р - давление фунт/дюйм² (абс);
V - скорость
Поток самотеком
Уравнение Маннинга для расчета диаметра трубы для максимального потока

d = 0,375

Q - объемный расход;
n - коэффициент шероховатости;
S - уклон.
Число Фруда соотношение силы инерции и силы тяжести

Fr = V / √[(d/12) · g]

g - ускорение свободного падения;
v - скорость течения;
L - длину трубы или диаметр.
Пар и испарение
Уравнение определения диаметра трубы для пара

d = 1,75·√[(W·v_g·x) / V]

W - массовый расход;
Vg - удельный объём насыщенного пара;
x - качество пара;
V - скорость.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение - функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода. Оптимальный размер трубы, например, для серной кислоты ограничивает скорость среды до значения, при котором не допускается эрозия стенок в трубных коленах, чтобы таким образом не допустить повреждения структуры трубы.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

пузырьковый поток (горизонтальный) снарядный поток (горизонтальный) волновой поток дисперсный поток

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода. Помимо этого на величину движущей силы влияют значения давлений в начальной и конечной точке. Увеличение перепада давления влечет за собой увеличение скорости потока жидкости, что, в свою очередь, позволяет подбирать трубопровод меньшего диаметра, и наоборот.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода. Окончательный подбор труб осуществляется с использованием дифференциального давления, учитывающего все вышеперечисленные факторы, а не основывается только лишь на перепаде высот начальной и конечной точки.

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример - явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода. Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке. Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д. Размер участка трубопровода, на котором происходит отбор проб, обычно зависит от типа анализируемой рабочей среды и расположения точки отбора пробы.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть. Таким образом, размер лини отбора проб для анализа суспензий во многом зависит от размера твердых частиц и характеристик среды. Аналогичные выводы применимы и к вязким жидкостям.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость. При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении. Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно. Перемешивание обеспечивается благодаря оборудованию, такому как резервуар с мешалкой, в то время как в трубопроводах, это достигается за счет поддержания турбулентных условий движения потока среды.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода - это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу. Но прежде чем выбрать какой-либо способ ремонта необходимо провести тщательное изучение причины возникновения утечки. В отдельных случаях может потребоваться не просто ремонт, а смена маршрута трубы для предотвращения повторного ее повреждения.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника. Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов. Далее устанавливают необходимое оборудование и осуществляют непосредственно ремонт. Ремонтные работы проводят на поврежденном участке, освобожденном от среды и без давления. По окончании ремонта заглушки открывают и восстанавливают целостность трубопровода.