С проблемой получения воды сталкивались многие, кому доводилось попадать в экстремальные условия. Путешественники нередко оказывались в ситуациях, когда поблизости нет ни реки, ни даже самого крошечного родника. Между тем, вода для человеческого организма важнее, чем пища, и если ее не добыть, то попавший в беду путешественник помощи может и не дождаться. Воду можно получить из воздуха. Она имеет свойство конденсироваться, и если построить специальное устройство, то за несколько часов удастся получить количество влаги, достаточное для поддержания жизнедеятельности организма. Предметы, необходимые для строительства конденсирующего устройства, любители экстрима обычно берут с собой в поход.

Вам понадобится:

  • лопата;
  • кусок полиэтилена или другого пластика;
  • трубка от капельницы;
  • несколько камней.

Инструкция

1. Для конденсации воды необходимо использовать солнечное тепло. Если положить на землю кусок полиэтилена, воздух под ним начнет прогреваться. Какое-то количество влаги в воздухе всегда есть, даже если давно не было дождя. Надо только эту воду забрать. Воздух, оказавшийся между землей и полиэтиленом, будет греться до тех пор, пока не насытится влагой так, что не сможет больше ее удерживать. Полиэтилен в любом случае будет холоднее находящегося под ним воздуха, а соответственно, капельки начнут оседать на полиэтилен. Если их станет много, они станут срываться и могут даже потечь небольшими ручейками. Поэтому надо построить для них ловушку.

2. Выройте яму диаметром примерно 1 м и глубиной около 0,5 м. На дно ямы поставьте ведро. Это и будет «ловушка» для воды. В ведро вставьте трубку от капельницы и выведите ее наверх. Трубка может быть и резиновой. Главное, чтобы она была достаточно длинной, не меньше расстояния между краем ямы и ведром. Если вы вставляете трубку сразу, то ее нужно чем-нибудь закрепить — например, положить на краю ямы камень и привязать к нему трубку. Но ее можно вставить и потом, когда все будет готово.

3. Расстелите над ямой кусок полиэтилена. Он должен не только полностью закрывать яму, но и основательно провисать, поэтому кусок нужен длиной 1,5-2 м. Короткие края его прижмите камнями. На середину полиэтилена тоже положите камень. Груз должен оказаться прямо над ведром.

Обратите внимание!

Вода сконденсируется не сразу. Нужно подождать примерно сутки, прежде чем наберется 0,5 литра. Но ведь можно сделать и несколько таких приспособлений, если есть полиэтилен или другой пластик. При этом ночью вода будет конденсироваться быстрее, чем днем, поскольку полиэтилен очень быстро охлаждается, а почва остывает гораздо медленнее.

Генератор воды из воздуха на приусадебном участке. March 9th, 2009

Египет на дачном участке
Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный. . .
.

Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
На Рис. 1 показан разрез фундамента.

Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;

Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Таблица 1

Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)
ostrov

Ученые создали машину, извлекающую воду из воздуха

«Водяную мельницу» можно использовать для получения чистой питьевой воды практически везде, где есть электричество. Для производства воды устройству достаточно электроэнергии, расходуемой тремя электрическими лампами.

Получение воды, пригодной для питья, проходит несколько этапов. Вначале устройство втягивает в себя воздух через специальные фильтры, очищая его от пыли и сора, потом воздух охлаждается до температуры, при которой появляется влага. Конденсированная вода проходит через резервуар, где с помощью ультрафиолетовых излучений уничтожаются возможные инфекции. В итоге вода очищается, а затем по трубам поступает в холодильник или кухонный кран. Сделанное из белого пластика устройство напоминает гигантский мяч для гольфа, расколотый пополам.

Разработчики утверждают, что сейчас в «Водяной мельнице» нет острой необходимости. Однако уже сегодня люди не хотят зависеть от систем водоснабжения, на которые нельзя положиться.

Устройством в первую очередь должны заинтересоваться сторонники «зеленого» образа жизни. Дело в том, что производство и потребление воды в пластиковых бутылках уже давно превратилось в экологическую катастрофу. Только жители США потребляют порядка 30 миллиардов литров воды в бутылках в год. 30 миллионов бутылок каждый день оказываются на свалках. Неудивительно, что в Тихом океане несколько лет назад был обнаружен целый остров из мусора, значительную часть которого составляют именно пластиковые бутылки.

Недостатков у «Водяной мельницы» всего два. Во-первых, цена – 1200 долларов. Как отмечают разработчики, в условиях кризиса машина может оказаться недоступной для массового потребителя. Однако покупка WaterMill окупит себя уже через пару лет, ведь ее обладатель перестанет покупать воду в пластиковых бутылках.

Во-вторых, устройство может работать не везде. Например, в Аризоне нередко происходит снижение уровня относительной влажности ниже 30%, что мешает получению воды из воздуха. Впрочем, ученые нашли выход и из этой ситуации: встроенный в устройство компьютер позволяет увеличивать производительность воды на рассвете, когда уровень влажности выше всего.

Материал подготовлен редакцией rian.ru на основе информации открытых источников

Изобретение относится к водолазной технике и может быть использовано при создании аппаратов для автономного подводного плавания. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличается тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм. Газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Достигается увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. 4 з.п. ф-лы.

Изобретение относится к области проведения подводных работ и может быть использовано при создании аппаратов для автономного подводного плавания с практически неограниченным временем пребывания под водой, а также для жизнеобеспечения людей под водой и их деятельности. В настоящее время для этих целей используют акваланги или замкнутые, герметичные устройства типа подводных лодок. В первом случае для дыхания под водой используют баллоны со сжатым или сжиженным газом, в состав которого входит кислород, а во втором случае, как правило, используют регенерационные химические элементы для сорбции углекислого газа и восстановления кислорода (патент РФ 2138421, B 63 С, 11/00, 11/36, опубл. 1999 г.). Недостатками известных решений являются сложность и дороговизна, а время пребывания под водой ограничивается запасом газа в баллоне или объемом регенерационных элементов. Наиболее близким к предлагаемому способу по своей сущности является способ, основанный на извлечении кислорода из воды и выводе углекислого газа через полую камеру, выполненную из селективных пленочных пластмассовых мембран, который нами принят за прототип ("Наука и жизнь", 1965 г., 3, с.139; "Наука и жизнь", 1967 г., 2, с. 86). Однако существенным недостатком способа является то, что скорость газообмена между воздухом и водой, зависящая от величины скорости диффузии кислорода и углекислого газа через мембрану, при небольшой движущей силе (определяемой разницей парциальных давлений кислорода внутри камеры и снаружи над водой) является весьма низкой, вследствие чего для обеспечения человека кислородом требуется мембрана площадью 6 м 2 , что весьма дорого, требует сложной конструкции камеры и применения дефицитных пластмассовых материалов. Задачей предлагаемого изобретения является существенное увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. Поставленная задача решается за счет того, что в способе извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, пленкой-мембраной, при этом в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляется при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Кроме того, давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки мембраны. Кроме того, давление воздуха в камере поддерживают путем принудительной подачи газа. В качестве газа используют воздух или кислород, или азот, или гелий, или их смеси. В качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, синтетические материалы. В настоящем изобретении используются силы поверхностного натяжения на границе раздела фаз (в данном случае воздух-вода); силы поверхностного натяжение воды позволяют поддерживать избыточное давление воздуха. Граница раздела фаз при этом находится в порах используемой мембраны. Таким образом, в порах мембраны устанавливается непосредственный контакт между газовой средой и водой и газообмен осуществляется непосредственно, минуя диффузию через вещество мембраны, что значительно увеличивает его скорость, а это, в свою очередь, позволяет снизить площадь мембраны. Достаточно всего 10-50 мм водяного столба избыточного давления, чтобы исключить попадание воды внутрь камеры, хотя газообмен в целом и газообмен по отдельным газовым компонентам проходит и при значительно больших значениях избыточного давления. Интенсивность газообмена зависит от разницы парциальных давлений газовых компонентов внутри камеры и над соприкасающейся с мембраной водой. Выбор материала и размера пор мембран для создания полой камеры проводился на специальном стенде-камере. Сверху камеры устанавливался образец пористой мембраны диаметром 50 мм и укреплялся сверху нижней полой герметичной части стенда. Нижняя часть стенда снабжена манометром для замера давления воздуха. Кроме того, к нижней части стенда подведена подача воздуха. При установлении сухой пористой мембраны воздух практически беспрепятственно проходит через поры мембраны. При погружении стенда в воду ее сопротивление многократно увеличивается, так как на границе раздела фаз воздух-вода в порах мембраны силы поверхностного натяжения воды препятствует свободному прохождению воздуха. Сопротивление полой мембраны обратно пропорционально диаметру отверстий пор и изменяется от 5 мм водяного столба при диаметре пор 100 мкм до нескольких атмосфер избыточного давления при диаметре пор менее 0,01 мкм. При дальнейшем погружении стенда под воду сопротивление мембраны дополнительно возрастает на величину гидростатического давления столба воды и зависит от глубины погружения. Проверка газообмена между водой и полой камерой осуществлялась на специально созданных аппаратах. Результаты испытаний приведены в нижеследующих примерах, которые иллюстрируют, но не ограничивают возможность использования предлагаемого изобретения. Пример 1. Испытатель через загубник с патрубком, соединенным с полой камерой объемом около 100 л, образованной путем обтяжки смоченной водой хлопчатобумажной тканью двух колец диаметром по 800 мм с размером сквозных пор до 100 мкм при расстоянии между кольцами 200 мм, опускался под воду на глубину от 0,3 до 1,5 м. Давление внутри камеры было на 30-50 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, которое изменялось от 1,03 до 1,15 ата. При опускании камеры в воду к ней подвешивался груз для преодоления выталкивающей силы воды. При этом дыхание осуществлялось только воздухом, находящимся внутри камеры. Выдох осуществлялся также внутрь камеры. Время, проведенное испытателем под водой, составляло 50 мин. Вдох и выдох через камеру осуществлялся без заметных усилий. В отсутствие газообмена между воздухом камеры и водой испытатель мог бы дышать данным объемом воздуха не более 10 мин, после чего из-за исчерпывания кислорода и накопления СО 2 дыхание оказалось бы невозможным. Следовательно, газообмен между воздухом камеры и водой осуществлялся нормально. Пример 2. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют "ядерные" фильтры на основе полиэтилентерефталата с диаметром пор 0,01 мкм. Испытатель провел под водой 40 мин. Пример 3. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют комбинированную ткань на основе шерстяных и синтетических волокон. Диаметр пор материала находится в пределах от 15 до 80 мкм. Испытатель провел под водой 2,0 ч, опускаясь на глубину до 2,6 м. Давление внутри камеры было на 90 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, составлявшего 1,26 ата. Пример 4. Способ осуществляют аналогично примеру 1, но погружение проводят на глубину 7,0 м при давлении внутри камеры на 70 мм водяного столба выше значения 1,7 ата. При этом за счет гидростатического давления камера сжималась и объем ее уменьшался приблизительно до 58 л. Для восстановления объема камеры из баллона со сжатым воздухом через специальное устройство была проведена подпитка воздуха до восстановления объема камеры 100 л. Дыхание не вызывало затруднений у испытателя. Опыт продолжался 30 мин. Пример 5. Способ осуществляют аналогично примеру 4, но подпитку для восстановления объема проводят смесью гелий - кислород с 20 об.% кислорода. В течение 45 мин испытатель дышал этой смесью без заметных затруднений при вдохе и выдохе. При этом часть подаваемого газа выходила из камеры через наиболее крупные поры мембраны. Давление внутри камеры было на 220 мм водяного столба выше значения 1,7 ата. Пример 6. Из материала на основе вискозы и стеклоткани с диаметром пор менее 70 мкм был изготовлен купол объемом 50 л. Купол помещают под воду и заполняют его объем азотом. После 5 ч нахождения купола под водой отбирают пробу газа на содержания кислорода. Анализ показал присутствие кислорода под куполом в количестве 18,7 об.%, что свидетельствует о диффузии кислорода из воды. Как видно из представленных примеров, предложенный способ позволяет работать под водой в течение длительного времени (до двух и более часов) на различных глубинах, при этом за счет извлечения воздуха (кислорода) из воды концентрация кислорода поддерживается постоянной даже при значительно меньшей (около 1,5 м 2) поверхности мембраны.

Формула изобретения

1. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличающийся тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры.2. Способ по п.1, отличающийся тем, что давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки-мембраны.3. Способ по п.1 или 2, отличающийся тем, что давление воздуха в камере поддерживают путем принудительной подачи газа.4. Способ по п.3, отличающийся тем, что в качестве газа используют воздух, или кислород, или азот, или гелий, или их смеси.5. Способ по любому из пп.1-4, отличающийся тем, что в качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, шелковые, синтетические материалы.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Предлагаю Вашему вниманию интересную статью на которую случайно наткнулся и выкладываю сюда. Сайт с которого он был сохранен назывался магов.нет, но у меня он туда так и не зашел. Поэтому выкладываю текст статьи и схемки:
"Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный.
Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;
Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)

Экология потребления.Наука и техника:Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?.. Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой...» А это примерно 326 млн кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% – пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

К 2025 году девять миллиардов человек на планете будут делить всё-то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы. А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тыс. км3 влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёпый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути, они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной во¬ы, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5°С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах. В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Основной продукт компании Element four называется «Водяная мельница» (WaterMill).

Она собирает до 12 л воды в сутки для различных домашних нужд и при этом обладает приятным дизайном. Владельцы могут не беспокоиться о наличии в собранной жидкости токсинов и бактерий. Специальные системы заботятся о затрате устройством как можно меньшего количества энергии (а в скором времени установку можно будет подсоединить к альтернативным источникам энергии). На специальном экране отображается информация о температуре, относительной влажности и количестве полученной влаги.

Цены на WaterMill объявят в начале 2009 г. А началось все в 2004 г., когда Джонатан Ритчи и Рик Ховард решили создать свой генератор воды из воздуха. Поначалу они работали в канадской исследовательской компании Freedom Water, но в 2008-м был произведён ребрендинг, и вот Element Four выпустила свой первый продукт.

AirWater Corporation

Эта компания была образована в феврале 2003 г. после корпоративного решения Universal Communication Systems (UCSY) начать работу в области высоких технологий по извлечению воды из воздуха. Впрочем, различные научные исследования она проводила более 13 лет, в течение которых запатентовала многие свои технологические решения.

AirWater Corporation специализируется на установках, поставляющих воду в количестве от 100 до 5000 литров в день. Правда, и габариты у этих аппаратов соответствующие. Есть даже специальные мобильные установки, снабжающие питьевой водой армейские подразделения в полевых условиях.

В арсенале этой фирмы присутствуют мобильные устройства и те, что одновременно делают лёд. У Air Water Corporation уже существуют решения для ирригации и отдалённых районов, в которых их продукт может работать от солнечных батарей (кстати, эта компания производит и их тоже).

Более крупные (и сопоставимые) генераторы воды из атмосферного воздуха производят также компании White Buffalo Nation и Aqua Sciences.

Устройства, разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом. Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair

Aquair – американское дочернее предприятие RG Global Lifestyles, появившееся на свет в 2004 г. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды. В результате получается пятиступенчатый фильтр (схема установки показана на предыдущей стр.).

Кстати, на сайте компании можно найти калькулятор, который позволяет приблизительно подсчитать расход воды на разные нужды в течение года.

Другие компании

Австралийская фирма AirtoH2O тоже делает воду из воздуха и гордится тем, что насобирала более 360 тысяч литров живительной влаги (о чём открыто сообщает на своём сайте). Её продукция почти ничем не отличается от других таких же мелких производителей: китайского Water Master и расположившегося в Техасе Aqua Maker.
Добавим, что о цене литра воды, полученной любой из установок, говорить сложно. Однако все производители заявляют о том, что у них низкие затраты энергии, а стоимость литра оценивается от 1 до 15 амер. центов.

Вообще, подсчёт таких значений – сложное дело, ведь стоимость литра драгоценной жидкости зависит от вместимости генератора (ежегодного выхода воды), а также от влажности и температуры воздуха за его бортом.
Отметим также, что существуют альтернативные методы получения воды из воздуха. Так, один из методов основан на интенсивном впитывании атмосферной влаги жидким хлоридом лития. Полученная смесь затем проходит несколько полупронецаемых мембран благодаря эффекту обратного осмоса, в результате чего вода отделяется от литиевой соли.

Основные же выводы таковы: направление это определённо перспективное и почти безвредное для окружающей среды. Однако вряд ли любая из существующих компаний сможет решить мировую проблему нехватки чистой питьевой воды. Отчасти из-за того, что недостаточно крупны пока что производители воды из воздуха. Кроме того, граждан развитых стран не так-то просто научить ценить природные ресурсы, а бедным странам вряд ли по карману обеспечить всех своих жителей удобным и достаточно простым источником воды в виде описанных генераторов. опубликовано

Присоединяйтесь к нам в