ESL MLCC-конденсаторов, произведен магнитным потоком, который появляется тогда, когда электрические токи протекают через внешние и внутренние электроды, как показано на Рис. 3.11. Поэтому, мы можем изменить ESL, изменяя путь тока и распределение в результате изменения в конфигурации электродов.

Пример конденсатора с уменьшенным ESL за счет новой конфигурации электродов показан на Рис. 3.12. Из рисунка видно, что конденсатор с уменьшенной индуктивностью из-за его широкого и короткого электрода, реверсивная длина на ширину или LW-конденсатор. Как видно из внутренней структуры на Рис. 3.13(a), внутренний электрод более широк и короче по сравнению с общим MLCC-конденсатором.

Рис. 3.11. Механизм возникновения ESL в MLCC-конденсаторе

Рис. 3.12. Конструкции конденсаторов с низким ESL

Рис. 3.13. Структура конденсатора с низким ESL

На Рис. 3.12(б) и (в) показан многовыводной конденсатор с увеличенным числом внешних электродов, где соседние электроды полностью изменили полярности. Как показано во внутренних структуры на Рис. 3.13(б) и (в), внутренние электроды сформированы толстыми и короткими проводниками и дополнительно внутренние электроды сформированы так, чтобы они могли поочередно связываться с внешним электродом. Выбирая такую структуру, в которой взаимная индуктивность происходит между токами, когда они текут в противоположных направлениях, компенсируя индуктивность друг друга. Для компонентов, где токи протекают между соседними электродами, петля тока имеет тенденцию быть чрезвычайно маленькой в противоположность токам, текущим в противоположных направлениях. Кроме того, эти индуктивности соединены параллельно, реализуя чрезвычайно малую ESL как общую для компонента.

Рис. 3.14. Пример особенностей полного сопротивления для конденсатора с низким ESL

Рис. 3.14 показывает пример сравнения полных сопротивлений обычного MLCC-конденсатора и конденсатора с малым ESL. Все конденсаторы имеют размер 1,6Ч0,8 мм и емкость 1 мкФ. Полное сопротивление уменьшается приблизительно на 1/5 для LW-конденсатора в частотном диапазоне выше 100 МГц. По сравнению с обычным конденсатором ESL многовыводного конденсатора должен быть меньше 1/10.

Характеристики, показанные на Рис.3.14, являются таковыми из преобразования от S параметра к полному сопротивлению, когда конденсатор установлен на стороне обхода микрополосковой линии (МПЛ) для измерения. Поэтому, они представляют характеристики, определенные для компонента (и могут быть представлены сосредоточенными параметрами).

Вообще, устанавливая конденсатор на печатной схеме, влияние индуктивности (ESLpcb) образца, связанного с конденсатором и отверстием, в дополнение к ESL конденсатора, является существенным. Как показано на диаграмме, когда многовыводной конденсатор установлен на основании, эффект компенсации индуктивности между токами, текущими в противоположных направлениях рядом друг с другом, влияет на токи в контактной площадке и отверстии, как на Рис. 3.15, делая влияние ESLpcb относительно малым. Поэтому, по сравнению с использованием MLCC-конденсаторов с обычным контактными площадками и отверстиями, использование площадок и отверстий, специализированных для многовыводных конденсаторов, привел бы к более высокому эффекту усовершенствования полного сопротивления, превосходящему разницу в показателях, обозначенную на Рис. 3.14.

Рис. 3.15. Подавление эффекта индуктивности при установке многовыводного конденсатора

Перечень конденсаторов с низким ESL

Краткий обзор конденсаторов с низким ESL показан ниже. LW-конденсаторный ряд LLL-серии

Конденсатор с 3 терминалами

Другой метод уменьшения ESL является использование конденсаторов с 3 терминалами. Пример конденсатора с 3 терминалами показан на Рис. 3.16. Это тип проходного конденсатора, которым является MLCC с превосходными частотными характеристики, имея цепи соединения для уменьшения ESL.

Рис. 3.16 Пример конденсатора с 3 выводами для цепи питания

Рис. 3.17 Механизм уменьшения ESL при использовании конденсатора с 3 выводами

Как показано Рис. 3.17, конденсатор с 3 терминалами структурирован с терминалами входа/выхода, чтобы подтянуть путь помех в компонент. Следовательно, возникновение индуктивности во внутреннем электроде расширяется на три пути, формируя T-образную цепь. Когда присоединяются терминалы входа/выхода конденсатора с 3 выводами к помеховому пути, ESL в направлениях входа/выхода включается в путь помех последовательно, увеличивая вносимые потери (улучшающий эффект подавления помех). Кроме того, ESL в направлении обхода только на участке заземления, в два раза меньше, чем для MLCC. Конденсатор с 3 терминалами, показанный на Рис. 3.16, дополнительно уменьшает индуктивность в области заземления, проектируя это с двумя электродами заземления на левых и правых сторонах конденсатора.

Эти новшества делают ESL конденсатора с 3 терминалами в направлении обхода приблизительно от 10 к 20 пГн, что является меньше 1/30 от обычного MLCC конденсатора некоторых моделей. Поэтому, мы можем ожидать хороший эффект обхода на высокой частотой более 1 ГГц.

Вносимые потери для MLCC и конденсатора с 3 терминалами сравнены Рис. 3.18. Они оба имеют размеры 1,6Ч0,8 мм и емкость 1 мкФ, но конденсатор с 3 терминалами показывает уменьшение потерь приблизительно на 35 дБ в частотном диапазоне более 100 МГц.

Рис. 3.18. Вносимые потери конденсатора с 3 терминалами

В дополнение к эффекту, описанному выше, конденсаторы с 3 терминалами характеризуются увеличением вносимых потерь, формируя фильтр T-типа, не вмешиваясь в ток, текущий в направлении обхода, так как его индуктивность (ESLpcb) от контактной площадки и отверстия расположена последовательно с путем помех, где терминалы входа/выхода установлены. Хотя его ESLpcb в области, где монтируются терминалы заземления, входят в направлении обхода, это может быть минимизировано в многослойной плате соединением с плоскостью заземления с многократным отверстиями в этой области непосредственно ниже компонента.

По этим причинам конденсаторы с 3 терминалами могут обеспечить большие вносимые потери по сравнению с MLCC, даже когда они установлены на печатной плате. Кроме того, уменьшение потерь, когда они установлены в цепи низкого полного сопротивления, меньше чем MLCC (из-за ESLpcb, расположенного последовательно с помеховым путем).

На Рис. 3.19 дан пример, подтверждающий, что эффект подавления помех конденсатора с различным полным сопротивлением определяется посредством эксперимента. Конденсаторное действие обхода наблюдается, в этом случае, проводя измерения распределения магнитного поля в ближней зоне вокруг конденсатора. Это визуально иллюстрирует путь, по которому помеха направляется к земле через конденсатор, так как магнитное поле, очевидно, связано с током.

Волновое сопротивление проводки, используемой в этом эксперименте, (a) приблизительно 60 Ом и (б) 3 Ом. Оба конца проводки согласованы. Частота измерения составляла 100 МГц, в то время как диапазон измерения составлял 40Ч30 мм с конденсатором, установленным в центре. Диаграмма показывает, что помеха поступает с правой стороны, и эффект ее подавления конденсатором зависит от тока, уходящего с левой стороны. Интенсивность тока отмечена в цвете, указывая на более сильный ток изменением от синего до красного.

Мы могли подтвердить экспериментально (Рис. 3.19), что MLCC управляет помехами относительно хорошо для (a) 60 Ом, но его эффект фильтрования имеет тенденцию уменьшаться для (б) 3 Ом (электрические токи протекают через него налево). Тем временем, конденсатор с 3 выводами управлял помехами хорошо и для (a) и для (б). Найдено, что у конденсаторов с 3 выводами есть тенденция для меньшего распространения помех к земле по сравнению с MLCC. Это, как предполагается, - потому что конденсатор с 3 выводами связан с землей через отверстие непосредственно под компонентом.

Рис. 3.19. Изменение в распределении тока вокруг конденсатора, когда волновое сопротивление измерения различно: а) 60 Ом, б) 3 Ом

Широкий проводник с низким волновым сопротивление имеет тенденцию использоваться для цепей электропитания, и конденсатор с 3 выводами лучший выбор для подавления помех.

Набор конденсаторов с 3 выводами для цепей питания

Набор конденсаторов с 3 выводами, подходящих для питаний ИМС, упомянут ниже.

Выводы

Два важных фактора влияют на рассмотрение проблем целостности сигнала:

Повышение частоты ведёт к увеличению скоростей изменения токов

dI /dt и напряжений dV /dt в цепях аппаратуры. Это означает, что проблемы, не оказывающие никакого влияния на низкочастотные проекты, могут иметь катастрофические последствия в проектах следующего поколения быстродействующих узлов;

Эффективное решение проблем целостности сигнала базируется на

понятиях полных сопротивлений межсоединений. Если мы имеем глубокое представление о полном сопротивлении и сможем установить

при конструировании соответствие параметров конструкции печатной

платы и соответствующих полных сопротивлений, то можно устранить

проблемы целостности сигнала на этапе проектирования. Для более

Результатами выполнения этих задач являются:

  • ? для концептуальной стадии рекомендации относительно реализуемости требований технического задания по быстродействию; рекомендации по выбору материалов и технологии изготовления;
  • ? для стадии схемотехнического проектирования - уточнение требований к электрическим параметрам микросхем; получение рекомендаций по установке помехоподавляющих элементов; получение рекомендаций по выбору корпусов микросхем; платы и сборки печатного узла;
  • ? для стадии топологического проектирования - выработка топологических норм и рекомендаций для трассировки платы; получение данных для расположения компонентов на плате; определение требований к

Увеличение рабочих частот цифровых интегральных схем является сейчас основной устойчивой тенденцией в электронике. Но наряду с увеличением частоты часто происходит и увеличение энергопотребления. Потому актуальна задача стабилизации питания высокочастотных узлов и снижение влияния их работы на остальную часть электронной схемы – так называемая развязка по питанию.

Обычно для этих целей используются многослойные керамические конденсаторы, монтируемые непосредственно в цепи питания высокочастотных узлов. Но на частотах свыше 10 МГц эффективность фильтрации пульсаций ими резко падает. Связано это с ростом импеданса конденсатора из-за наличия у него индуктивности и, соответственно, эквивалентного последовательного индуктивного сопротивления. Потому инженеры начали обвешивать высокочастотные микросхемы и узлы множеством соединенных параллельно керамических чип-конденсаторов, подобно гирляндам для новогодних елок. Об использовании выводных конденсаторов здесь не может идти речи из-за дополнительной индуктивности выводов.

Большинство производителей конденсаторов для решения этой проблемы выпускают специальные серии конденсаторов со сниженной эквивалентной последовательной индуктивностью (ESL). Для этих целей выводы конденсаторов располагают по длинной стороне (рис.1). При подобном исполнении удается снизить конструктивную индуктивность примерно вдвое.

Рис.1

Но даже этот уровень индуктивности не является достаточно низким для современных высокочастотных схем, зачастую работающих в диапазоне свыше 100 МГц. Да и емкость подобных конденсаторов у большинства производителей, ограниченная, обычно, номиналом в 0.2 мкФ, не позволяет добиться высокой эффективности подавления высокочастотных помех при их использовании в силовых цепях высокочастотных устройств.

Интересное решение в этой области предлагает японская фирма Murata. Ею разработана серия трехвыводных проходных конденсаторов высокой емкости и высокой нагрузочной способности, включающая исключительно компактные изделия размером 1.6´0.8 мм и емкостью в 1мкФ на основе диэлектрика X7R. Внешний вид этих изделий представлен на рис.1. Эквивалентная электрическая схема – на рис.2, а в таб.1 даны основные характеристики некоторых изделий данной серии.


Таб.1


Рис.2

Сравнение одного из конденсаторов новой серии NFM18PC105R с обычными многослойными керамическими конденсаторами и с конденсаторами с пониженной индуктивностью аналогичных емкостей, представлено на рис.3. Там показано примерно 10-кратное снижение импеданса у NFM18PC105R на высоких частотах, связанное с его сниженной конструктивной индуктивностью.


Рис.3

Примечание к рисунку: Так как конденсаторы с выводами по длинной стороне корпуса с размерами 1.6х0.8 на 1мкФ серийно не выпускаются, исследователи использовали для данного сравнения такой же конденсатор с размерами 2.0х1.25.

Известно, что при параллельном включении конденсаторов суммарная эффективная индуктивность подобной схемы уменьшается. На рис.4 представлены результаты сравнения одного и десяти параллельно включенных многослойных конденсаторов с одним трехвыводным конденсатором NFM18P. Как видно, один трехвыводной конденсатор заменяет по качеству фильтрации высокочастотных помех 10 обычных многослойных керамических.


Рис.4

Следует отдельно отметить высокую для номиналов 0.1-1.0мкФ стабильность емкости, благодаря диэлектрику X7R, использованному при производстве большинства представленных в таб.1 конденсаторов. Малые габариты, высокая нагрузочная способность – до 6А, исключительно низкий импеданс на частотах свыше 10 МГц делает использование этих изделий исключительно привлекательным во множестве высокочастотных схем, и безальтернативными в современных компактных устройствах, таких как переносные ВЧ/СВЧ передатчики, игровые приставки, карманные компьютеры.

Валерий Степуков

Э лектрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин - обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68000 мкФ 1 мкФ до 16 мкФ
± 10 и ±20 ±10 и ±50 ±20
50 - 250 6,3 - 400 250 - 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в).

Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида - диэлектрика очень мала.

При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные - просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов - разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Таблица 2.
Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот - металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера - это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Таблица 3.
Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 - 630 160 6,3 - 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Конденсаторы на основе поликарбоната используются в фильтрах, генераторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.
В металлобумажных конденсаторах общего назначения, обкладки изготавливаются путем напыления металла на бумагу пропитанную специальным составом и покрытые тонким слоем лака.

Код Емкость(пФ) Емкость(нФ) Емкость(мкФ)
109 1,0(пФ) 0,001(нФ) 0,000001(мкФ)
159 1,5(пФ) 0,0015(нФ) 0,0000015(мкФ)
229 2,2(пФ) 0,0022(нФ) 0,0000022(мкФ)
339 3,3(пФ) 0,0033(нФ) 0,0000033(мкФ)
479 4,7(пФ) 0,0047(нФ) 0,0000047(мкФ)
689 6,8(пФ) 0,0068(нФ) 0,0000068(мкФ)
100 10(пФ) 0,01(нФ) 0,00001(мкФ)
150 15(пФ) 0,015(нФ) 0,000015(мкФ)
220 22(пФ) 0,022(нФ) 0,000022(мкФ)
330 33(пФ) 0,033(нФ) 0,000033(мкФ)
470 47(пФ) 0,047(нФ) 0,000047(мкФ)
680 68(пФ) 0,068(нФ) 0,000068(мкФ)
101 100(пФ) 0,1(нФ) 0,0001(мкФ)
151 150(пФ) 0,15(нФ) 0,00015(мкФ)
221 220(пФ) 0,22(нФ) 0,00022(мкФ)
331 330(пФ) 0,33(нФ) 0,00033(мкФ)
471 470(пФ) 0,47(нФ) 0,00047(мкФ)
681 680(пФ) 0,68(нФ) 0,00068(мкФ)
102 1000(пФ) 1(нФ) 0,001(мкФ)
152 1500(пФ) 1,5(нФ) 0,0015(мкФ)
222 2200(пФ) 2,2(нФ) 0,0022(мкФ)
332 3300(пФ) 3,3(нФ) 0,0033(мкФ)
472 4700(пФ) 4,7(нФ) 0,0047(мкФ)
682 6800(пФ) 6,8(нФ) 0,0068(мкФ)
103 10000(пФ) 10(нФ) 0,01(мкФ)
153 15000(пФ) 15(нФ) 0,015(мкФ)
223 22000(пФ) 22(нФ) 0,022(мкФ)
333 33000(пФ) 33(нФ) 0,033(мкФ)
473 47000(пФ) 47(нФ) 0,047(мкФ)
683 68000(пФ) 68(нФ) 0,068(мкФ)
104 100000(пФ) 100(нФ) 0,1(мкФ)
154 150000(пФ) 150(нФ) 0,15(мкФ)
224 220000(пФ) 220(нФ) 0,22(мкФ)
334 330000(пФ) 330(нФ) 0,33(мкФ)
474 470000(пФ) 470(нФ) 0,47(мкФ)
684 680000(пФ) 680(нФ) 0,68(мкФ)
105 1000000(пФ) 1000(нФ) 1,0(мкФ)


2. Второй вариант - маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.


3.Третий вариант.


У советских конденсаторов вместо латинской "р" ставилось "п".

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).



Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130....-49) A
33 N
0(+30....-47) C
-33(+30....-80) H
-75(+30....-80) L
-150(+30....-105) P
-220(+30....-120) R
-330(+60....-180) S
-470(+60....-210) T
-750(+120....-330) U
-500(-250....-670) V
-2200 K

Далее следует напряжение в вольтах, чаще всего - в виде обычного числа.
Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) - означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) - напряжение в вольтах.

Напряжение (В) Буквеный код
1 I
1,6 R
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 C
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с (вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).


Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая - закодированным значением в пикоФарадах(мантиссой). Цифра - показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость - 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость - 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.
A 1,0
B 1,1
C 1,2
D 1,3
E 1,5
F 1,6
G 1,8
H 2,0
J 2,2
K 2,4
L 2,7
M 3,0
N 3,3
P 3,6
Q 3,9
R 4,3
S 4,7
T 5,1
U 5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Одним из основных свойств конденсатора является его способность пропускать

переменный ток и не пропускать постоянный.

Подключения конденсатора к источнику напряжения.

А) К одному полюсу Б) К двум полюсам В) Заряды на пластинах образованы эл.полем.Основным параметром конденсатора является электрическая емкость.Емкость можноувеличить тремя способами:

1). Увеличить площадь пластин.

2). Уменьшить расстояние между пластинами.

3). Поставить между пластинами диэлектрик с большойотносительной диэлектрической проницаемостью. - ЕЕ = 1 для воздуха Е = 50 -1000 для сегнемоэлектриковЕ = 3-12 стеклоЕ = 6-8 Слюда

Свойства различных конденсаторов в основном определяется особенностямииспользуемого диэлектрика.

3.1 Классификация и схема у словных обозначений конденсаторов. Классификацию конденсаторов можно проводить на основе различных признаков (виддиэлектрика, вид исполнения функциональное назначение и т.д)В настоящее время конденсаторы делятся на 2 группы:

1). Силовые - применяются в энергетических и электротехническихустройствах.

2). Применяемые в электрических и радиотехнических устройствах.Мы будем рассматривать только 2 группу.

В основу классификации конденсаторов положено делении их на группы по видуприменяемого диэлектрика и его конструктивными особенностями, определяющихиспользование их в конкретных ценах аппаратуры.

3.2 Параметры конденсат о р о в.

С н - номинальная емкость и допускаемое отклонение от емкости. Параметробозначается на конденсаторе или указывается в сопроводительное документации.Номинальное значение емкости стандартизированы и выбираются из определённыхрядов чисел путем умножения или деления их на 10 П где п целое положительное илиотрицательное число.

U н номинальное напряжение. (Это напряжение указано на конденсаторе или вдокументации) при котором он может работать в заданных условиях в течении срокаслужбы с сохранением параметров в допустимых пределах. Параметр зависит отконструкции конденсатора и свойств применяемых материалов. При эксплуатациинапряжение на конденсаторе не должно превышать номинального. Для многих типовконденсаторов с увеличением температуры (как правило далее 70 - 85 градусовЦельсия) допускаемое напряжение снижается.

tg b- тангенс угла потерь. Характеризует абсолютные потери энергии вконденсаторе. Значение угла потерь у керамических высокочастотных, слюдяныхконденсаторов лежат в пределах (10..15)*! О" 4 . Величина обратная tg b называетсядобротностью конденсатора.

Соляризирование изоляции - этот параметр характеризует качестводиэлектрика. Наиболее высокое сопротивление изоляции у ферропластмассовых иполимированных конденсаторов, несколько ниже у низкочастотных, керамических,поликарбоновых и др. Самое низкое у сегнетокерамических конденсаторов. Дляоксидных конденсаторов задают ток утечки, значение которого пропорциональноемкости и напряжению. Наименьший ток утечки имеют таниаковые конденсаторы (отединиц до десятков микроампер), у алюминиевых как правило, на один два порядкавыше.

Температурный коэффициент емкости(ТКЕ) - это параметр применяемый дляхарактеристики конденсаторов с линейной зависимостью емкости от температуры.Определяет относительное изменение емкости от температуры при изменении ее наодин градус Цельсия.

3.3 Маркировка конденсаторов.

Маркировка на конденсаторах может быть буквенно-цифровая, содержащаясокращенное обозначение конденсатора, номинальное напряжение, емкость допуск,группу ТКЕ, дату изготовления.

В зависимости от размеров конденсатора применяются полные илисокращенные (кодированные) обозначения номинальных емкостей и их допустимыхотклонений. Не защищенные конденсаторы не маркируются, а их характеристикиуказываются на упаковке.

Полное обозначение номинальных емкостей состоят из цифрового значенияноминальной емкости и обозначения ед.изм.

Кодированное обозначение номинальных емкостей состоит из трех иличетырех знаков включающих две или три цифры и букву. Буква из русского илилатинского алфавита обозначает множитель, составляющие значение емкости, иопределяет положение запятой десятичного знака. Буквы П(р), Н(п),М(ц),Ф(Р)обозначают множитель 10~ 12 , 10~ 9 , 10~ 6 , 10" 3 и 1.

Допускаемые отклонения емкости (в процентах или микрофарадах) маркируютсяпосле номинально значения цифрами или кодом.

Цветовая кодировка применяется для маркировки номинальной емкости,номинального напряжения до 63В и группы ТКЕ. Маркировку наносят в виде цветныхточек или полосок.

3.4 Применение конденсаторов в РДА.

В зависимости от цели, в которой используется конденсаторы к ним предъявляетсяопределенные требования. Так конденсатор работающий в колебательном контуредолжен иметь маленькие потери на рабочей частоте, высокую стабильность емкостипри изменениях окружающей температуры, влажности и давления. В зависимости отконструкции и диэлектрика конденсаторы характеризуются различными ТКЕ, которыемогут быть положительными либо отрицательными. Для сохранения настройкиколебательных контуров при работе в широком интервале температуры частоиспользуются последовательные и параллельные соединения конденсаторов, ТКЕкоторых имеют разные знаки. Благодаря этому при изменении температуры частотанастройки такого термокомпенсированного контура остается практически неизменнойво времени. Для работы в диапазоне низкой частоты, а так же для фильтрации

выпрямленных напряжений необходимы конденсаторы емкость которых измеряетсясотнями и тысячами мкФ. Такую емкость достаточно малых размерах обеспечиваюттолько оксидные конденсаторы. Полярность включения оксидного конденсаторапоказана на схемах знаком «+» у той обкладки, которая символизирует анод. Длязащиты от помех, которые могут проникнуть в аппаратуру через цепи питания,используют проходной конденсатор с тремя выводами, два из которых представляютсобой сплошной токопроводящий стержень, проходящий через корпус конденсатора.К измерению присоединяется одна из обкладок. Третьим выводом являетсяметаллический корпус с которым соединена вторая обкладка. Корпус проходногоконденсатора закрепляют непосредственно на шасси или экране, а цепь питанияпроводят через его средний вывод. Благодаря такой конструкции токи высокойчастоты замыкаются на шасси или экран устройства, в то время как постоянный токпроходит без препятствий. С той же целью применяется опорные конденсаторы,представляющие собой миниатюрные стойки, устанавливаемые на металлическиешасси. Конденсаторы переменной емкости применяются для настройки иперенастройки колебательных контуров радиоприемников, диапазонныхрадиопередатчиков и радио измеряемой аппаратуры. Конденсаторы переменнойемкости состоят из двух групп металлических пластин, одна из которых может плавноперемещаться по отношению к другой и входить в зазор между пластинами второйгруппы. В результате такого движения пересечения одних пластин другимиизменяется и соответственно изменяется и емкость. Основными параметрамиконденсаторов переменной емкости, позволяющими оценивать его работу внастраиваемом колебательном контуре, являются min и max емкости. В большинстверадиоприемников требуется одновременная перестройка нескольких колебательныхконтуров (например антенный контур, контур гетеродина). Для этого применяютблоки конденсаторов состоящие из двух и более секций. Подвижные пластины в такихблоках закреплены на общем валу, вращая который можно одновременно изменятьемкости всех секций. Построечные конденсаторы применяют для настройки начальнойемкости колебательного контура определяет max частоту его настройки. Емкость всехконденсаторов можно изменять от единиц до нескольких десятков микрофарад.Подстраиваемый конденсатор состоит из керамического основания и подвижно

закреплённого на нем керамического диска обкладки конденсатора (тонкие слои

серебра) наносятся методом вжигания.

Литература.

1). Электрические конденсаторы и конденсаторные установки. Справочник 1987.

2). Вершинин О.В Мироненко И.Г Монтаж радиоэлектронной аппаратуры и

приборов.

ГОСТ 25519-82 Конденсаторы постоянной емкости.

ГОСТ 28896-91 Конденсаторы постоянной емкости для электронной промышленности,

общие тех.условия

ГОСТ 28884-90 Роды предпочтительных значений для резисторов и конденсаторов.

ГОСТ 14611-78 Конденсаторы постоянной емкости.