• 1.5.2. Определение полуторных оксидов гравиметрическим методом
  • 1.5.3. Определение железа фотометрическим методом
  • 1.5.4. Определение алюминия фотометрическим методом
  • 1.5.5.Вычисленное содержание алюминия по разности
  • 1.5.6. Определение кальция и магния комплексонометрическим методом
  • 1.5.6.1. Определение кальция
  • 1.5.6.2. Определение суммы кальция и магния
  • 1.5.7. Пероксидный метод определения титана
  • 1.5.8. Определение фосфора фотометрическим методом
  • 1.6. Способы выражения результатов валового анализа
  • 1.7. Пересчеты данных валового анализа
  • 1.8. Использование данных валового анализа
  • 1.8.1. Использование элементного состава для суждения о генезисе почв.
  • 1.8.2. Использование элементного состава для оценки потенциального плодородия почвы.
  • 1.8.3. Использование данных элементного состава для расчета молекулярных отношений
  • 1.8.4. Использование данных элементного состава для расчета запасов химических элементов
  • Пример расчета. Найти запас SiO2 в т/га если его содержание равно 80,63 %, плотность сложения почвы 1,18 г/см3, мощность слоя 9 см.
  • 1.8.5. Использование данных элементного состава при изучении биологического круговорота веществ
  • 1.8.6. Использование данных элементного состава для
  • 1.8.6.1. Метод прямого сравнения
  • 1.8.6.2. Методы стабильного компонента
  • 1.8.6.2.1. Метод молекулярных отношений
  • 1.8.6.2.2. Метод элювиально-аккумулятивных (еа) коэффициентов
  • 1.8.6.2.3. Метод баланса веществ
  • 1.8.7. Использование данных элементного состава для диагностики минералов илистой фракции.
  • Контрольные вопросы
  • Литература
  • Раздел II. Ионно-солевой комплекс почв
  • 2.1. Метод водной вытяжки
  • 2.1.1. Влияние солей на сельскохозяйственные культуры
  • 2.1.2. Достоинства и недостатки водной вытяжки как метода изучения засоленных почв
  • 2.1.3 Анализ водной вытяжки
  • 2.1.3.1. Определение величины рН водной вытяжки
  • 2.1.3.2. Определение величины сухого остатка
  • 2.1.3.3. Определение величины прокаленного остатка
  • 2.1.3.4. Определение щелочности от растворимых карбонатов
  • 2.1.3.5. Определение общей щелочности
  • 2.1.3.6. Определение хлорид-ионов
  • 2.1.3.7. Определение сульфат-ионов
  • 2.1.3.8. Определение ионов кальция и магния комплексонометрическим методом
  • 2.1.3.8.1. Определение кальция
  • 2.1.3.8.2. Определение суммы кальция и магния
  • 2.1.3.9. Определение натрия и калия
  • 2.1.3.9.1. Определение натрия и калия методом фотометрии пламени
  • 2.1.3.9.2. Определение содержания натрия и калия по разности
  • Форма 4. Данные анализа водной вытяжки
  • 2.1.4. Интерпретация данных водной вытяжки
  • 2.1.4.1. Характеристика солевого режима почв по величине сухого остатка
  • 2.1.4.2. Оценка химизма (типа) засоления почв.
  • 2.1.4.2.1. Общие принципы оценки химизма засоления почв
  • 2.1.4.2.2. Оценка степени засоления почв по содержанию токсичных ионов
  • 2.1.4.2.3. Оценка степени засоления почв по «суммарному эффекту» токсичных ионов
  • 2.1.5. Расчет промывной нормы
  • 2.2. Катионообменная способность почв
  • 2.2.1. Общие представления о катионообменной
  • 2.2.2. Методы определения катионообменной способности почв
  • 2.2.2.1. Оценка эффективной емкости катионного обмена
  • 2.2.2.2. Определение стандартной емкости катионного обмена по Бобко-Аскинази в модификации цинао
  • 2.2.2.3. Определение суммы обменных оснований методом Каппена-Гильковица
  • 2.2.2.4. Определение гидролитической кислотности
  • 2.2.2.5. Определение обменных катионов по методу Пфеффера в модификации в.А. Молодцова и и.В. Игнатовой
  • 2.2.2.5.1. Определение кальция комплексонометрическим методом
  • 2.2.2.5.2. Определение суммы кальция и магния комплексонометрическим методом
  • 2.2.2.5.3. Определение натрия и калия методом фотометрии пламени
  • 2.2.3. Использование результатов определения катионообменной способности почв
  • 2.2.3.1. Вычисление степени насыщенности почв основаниями
  • 2.2.3.2. Расчет дозы извести
  • 2.2.3.3. Вычисление степени солонцеватости почв
  • 2.2.3.4. Расчет дозы гипса
  • Контрольные вопросы
  • Литература
  • Раздел III. Органическое вещество почвы
  • 3.1. Подготовка почвы для определения содержания и состава гумуса
  • 3.2. Методы определения содержания общего гумуса почвы
  • 3.2.1. Прямые методы определения содержания углерода органических соединений (гумуса) почвы.
  • 3.2.2. Косвенные методы определения содержания углерода органических соединений (гумуса) почвы
  • 3.2.2.1. Определение гумуса методом и.В.Тюрина в модификации в.Н.Симакова
  • 3.2.2.2. Другие модификации метода и.В. Тюрина.
  • 3.2.2.2.1. Спектрофотометрический метод определения содержания гумуса (д.С. Орлов, н.М. Гриндель)
  • 3.2.2.2.2. Определение содержания органического углерода почвы методом и.В.Тюрина в модификации б.А.Никитина.
  • 3.3. Методы определения общего содержания азота почвы.
  • 3.3.1. Определение общего содержания азота методом Кьельдаля.
  • 3.3.2. Определение общего содержания азота микрохромовым методом и.В. Тюрина.
  • 3.4. Использование данных по содержанию общего гумуса и азота
  • 3.4.1. Расчет отношения c:n
  • 3.4.2. Вычисление запасов гумуса, углерода и азота.
  • 3.5. Методы определение группового и фракционного состава гумуса.
  • 3.5.1. Определение группового и фракционного состава гумуса по методу и.В. Тюрина в модификации в.В.Пономаревой и т.А.Плотниковой
  • 3.5.2. Определение группового и фракционного состава гумуса по модифицированной схеме в.В.Пономаревой и т.А. Плотниковой (т.А. Плотникова, н.Е. Орлова, 1984).
  • Ход анализа
  • 3.5.3. Ускоренный пирофосфатный метод определения состава гумуса по м.М. Кононовой и н.П. Бельчиковой
  • 3.6. Методы изучения некоторых свойств гумусовых кислот при анализе фракционно-группового состава гумуса
  • 3.6.1. Определение порога коагуляции гуминовых кислот.
  • 3.6.2. Оптические свойства гумусовых веществ.
  • 3.6.2.1. Электронные спектры поглощения гумусовых веществ
  • 3.6.2.2. Определение коэффициента цветности q4/6
  • 3.6.3. Гель-хроматография гумусовых веществ
  • 3.7. Показатели гумусового состояния почв
  • Продолжение таблицы 31
  • 3.8. Методы определения содержания и состава органического вещества в болотных торфяных почвах.
  • 3.8.1. Определение потери при прокаливании и зольности торфа.
  • 3.8.2. Одновременное определение общего содержания углерода и азота в торфяных почвах методом Анстета в модификации в.В. Пономаревой и т. А. Николаевой
  • Вычисление результатов анализа
  • Для анализа используют следующие реактивы:
  • 3.8.3. Определение общего содержания азота в растительных материалах (торфах, лесных подстилках и пр.) методом к.Е. Гинзбурга и г.М. Щегловой
  • 3.8.4. Определение содержания органического азота в вытяжках из торфов микрохромовым методом и.В. Тюрина
  • 3.8.5. Определение состава органического вещества торфяно-болотных почв по методу в.В. Пономаревой и т.А. Николаевой.
  • Контрольные вопросы
  • Литература
  • 3.8.1. Определение потери при прокаливании и зольности торфа.

    Метод основан на сжигании навески торфа в муфельной печи при температуре 800 о С. Потери при прокаливании характеризуют убыль массы торфа при нагревании его до указанной температуры, зольность – содержание золы (минеральных веществ) в абсолютно сухом торфе.

    Ход анализа. В предварительно прокаленный и взвешенный тигель с крышкой берут навеску торфа от 1-2 до 6-12 г. Взвешивание производят на аналитических весах. Одновременно в сушильный стаканчик берут навеску торфа 3-5 г для определения влажности.

    Тигель без крышки помещают в холодную или подогретую до 200 о С муфельную печь, находящуюся в вытяжном шкафу, и постепенно повышают температуру до 800 о С. Через 2-3 часа тигель с зольным остатком вынимают из печи, закрывают крышкой, охлаждают в течение 5 минут и помещают в эксикатор на 30 минут до полного охлаждения.

    Охлажденный тигель взвешивают на аналитических весах, после чего повторяют прокаливание в течение 40 минут, охлаждают и взвешивают. Прокаливание повторяют до тех пор, пока изменение массы не будет превышать 0,001 г. Если в процессе сжигания торфа произошло сплавление золы, то после охлаждения тигля ее растворяют несколькими каплями азотной кислоты, затем добавляют 1 мл насыщенного раствора NH 4 NO 3 , высушивают и снова озоляют. Определение влажности и зольности торфа выполняют в 2-кратной повторности.

    Зольность в процентах от массы абсолютно сухого торфа вычисляют по формуле:

    где ЗТ – зольность торфа, %; m 1 – навеска воздушно-сухого (влажного) торфа, г; m 2 – масса золы, г; W – влажность торфа, %.

    Расхождения между параллельными определениями зольности торфа не должны превышать 0,3 % для образцов с зольностью до 8,0 %, 0,5 % при зольности 8,1-20,0 % и 1,0 % при зольности больше 20,1 %.

    Потери от прокаливания вычисляются по формуле:

    ПП = 100 – ЗТ,

    где ПП – потери при прокаливании, в % от массы абсолютно сухого торфа; ЗТ – зольность торфа, %.

    Полученные данные используют для оценки запасов органических и минеральных веществ, а зольность торфа служит для его диагностики. При необходимости определяют химический состав золы. Аналогично анализируют и другие органогенные материалы.

    3.8.2. Одновременное определение общего содержания углерода и азота в торфяных почвах методом Анстета в модификации в.В. Пономаревой и т. А. Николаевой

    Принцип метода состоит в окислении навески вещества, содержащей от 50 до 100 мг органического С, серно-хромовой смесью с концентрацией 3,0 н. по CrO 3 при отношении H 2 SO 4: H 2 O, равным 3:2.

    В оригинальном методе Анстета описанная им техника окисления органического вещества не безопасна и не безупречна по точности получаемых результатов из-за мгновенного и сильного разогревания окислительной смеси и бурного разложения органического вещества. Поэтому в аналитической практике обычно используется модифицированная методика, предложенная В.В. Пономаревой и Т.А. Николаевой.

    Они рекомендуют предварительно готовить большой запас охлажденной смеси из двух объемов 12 %-ного водного раствора CrO 3 и одного объема концентрированной H 2 SO 4 и приливать к навеске вещества 30 мл этой смеси, а затем 20 мл концентрированной H 2 SO 4 .

    Ход анализа . Навески для анализа берут в зависимости от содержания в исследуемом материале золы, а именно:

    На аналитических весах берут навеску воздушно-сухого торфа или другого растительного материала (пропущенного через сито с диаметром отверстий 0,25 мм) и переносят в коническую колбу на 200-250 мл из термостойкого стекла. Для равномерного кипения окислительной смеси к навеске добавляют немного (на кончике ножа) прокаленной пемзы или почвы. Затем приливают очень точно из бюретки со стеклянным краном 30 мл серно-хромовой смеси и 20 мл концентрированной Н 2 SO 4 из другой бюретки или мерным цилиндром на 25 мл. Большая точность объема прибавляемой Н 2 SO 4 не обязательна, но необходима высокая точность объема прибавляемого раствора серно-хромовой смеси. Очень важно всегда придерживаться одинаковой, малой скорости стекания из бюретки хромовой смеси.

    Колбу закрывают маленькой воронкой в качестве холодильника, содержимое её осторожно перемешивают и по окончании бурного разложения органического вещества колбу ставят на заранее разогретую этернитовую плитку или песчаную баню, содержимое ее доводят до кипения и умеренно кипятят точно 5 мин по секундомеру или песочным часам. Не следует принимать за начало кипения интенсивное выделение мелких пузырьков диоксида углерода, которое происходит еще до закипания. Кипение смеси начинается тогда, когда на ее поверхности появляются крупные пузырьки газа.

    После охлаждения содержимое колбы осторожно переносят при помощи воды из промывалки в мерную колбу на 250 мл  . После окончательного охлаждения жидкость доводят в колбе до метки и очень хорошо перемешивают. Берут точно пипеткой две парные пробы по 25 мл на титрование солью Мора (с фенилантраниловой кислотой) для определения органического С по окисляемости и две пробы по 50 мл, для отгонки аммиака и определения N. Отгонку аммиака производят с 25 мл 50 %-ного раствора NаОН и кусочком гранулированного цинка или цинковой пылью. В приемную колбу наливают 25 мл 0,01 н. раствора Н 2 SO 4 . Избыток кислоты титруют 0,01 н. раствором NаОН с индикатором метилрот + метиленблау. При низком содержании азота в анализируемом веществе для отгонки NH 3 лучше взять не 50, а 100 мл раствора и соответственно 50 мл 50%-ного раствора NаОН.

    В точно таких же условиях проводят холостой опыт для установления соотношения между серно-хромовой смесью и раствором соли Мора, с одной стороны, и растворами 0,01 н. Н 2 SO 4 0,01 н. NаОН при определении N - с другой.

    Результаты определения С и N вычисляют в процентах от абсолютно сухой массы анализируемого вещества. Найденное количество N умножают на коэффициент 1,03 с учетом того, что при данном методе минерализуется в среднем 97% N .

  • Особенности состава и свойств болотных торфяных почв определяют показателями состава и свойств торфяных горизонтов. Состав глеевых горизонтов разнообразен и в значительной степени зависит от гранулометрического, минералогического и химического составов пород и почв, на которых сформировались торфяные почвы. Общими их особенностями являются неблагоприятные физические свойства (дезагрегированность и уплотненность) и наличие закисных форм железа.

    Генетическую и агрономическую оценку торфяных почв проводят по мощности торфяного слоя и следующим показателям торфа: степени разложения, ботаническому составу, составу органического вещества, содержанию азота, зольности и составу зольных элементов, реакции и физическим свойствам.

    Органическое вещество

    Органическое вещество. Оно составляет основную часть (в среднем 85-95%) торфа. В верховых болотных почвах оно представлено преимущественно целлюлозой, гемицеллюлозой, лигнином и воскосмолами. Торф этих почв слабо гумифицирован; гумусовые вещества составляют 10-15% общего углерода, в их составе преобладают ФК.

    Торф низинных болотных почв хорошо гумифицирован, в нем до 40-50% гумусовых веществ, в составе которых преобладают гуминовые кислоты.

    Торф болотных почв богат азотом (от 0,5-2,0% в верховых и до 3-4% в низинных почвах), но он содержится в трудномобилизуемых формах. В торфе верховых болотных почв азот представлен в различных азотсодержащих соединениях исходных растительных остатков, в торфе низинных почв - в значительной части и азотом гумусовых веществ. По запасам и формам соединений азота низинные болотные почвы более ценны по сравнению с верховыми как объект освоения и использования торфа для приготовления удобрений.

    Реакция почв и емкость поглощения катионов

    Реакция торфа верховых болотных почв кислая, а низинных колеблется от слабокислой до слабощелочной (в низинных карбонатных почвах). Лишь сульфатные низинные торфяные почвы имеют крайне кислую реакцию (рН КCL 1,1-3,0).

    Все виды торфа имеют высокую емкость поглощения катионов (от 80-90 до 130-200 мг * экв), но различаются по гидролитической кислотности и насыщенности основаниями. У верховых почв V= 10-30%, а у низинных - 70-100%.

    Степень разложения

    Степень разложения - важную характеристику торфа - определяют по относительному содержанию (в%) продуктов распада тканей, утративших клеточное строение. Ее устанавливают специальными анализами торфа, изучением строения растительных остатков под микроскопом. В полевых условиях степень разложения можно определить глазомерно

    (табл.2). Чем выше степень разложения торфа, тем ценнее агрономические качества торфяных почв как объекта возможного земледельческого освоения.

    Торф верховых болотных почв имеет слабую или среднюю степень разложения, а низинных - чаще всего высокую .

    Таблица 2 - Признаки различной степени разложения торфа

    Степень разложения

    Основные признаки состояния торфа

    Тип торфа

    Неразложившийся

    Торфяная масса не продавливается между пальцами. Поверхность сжатого торфа шероховатая от остатков растений, которые хорошо различимы. Вода выжимается струей, как из губки, прозрачная, светлая.

    Весьма слаборазложившийся

    Вода выжимается частыми каплями, почти образуя струю, слабо-желтоватая.

    Слаборазложившийся

    Вода отжимается в большом количестве, желтого цвета, растительные остатки заметны хуже.

    Среднеразложившийся

    Масса торфа почти не продавливается в руке, растительные остатки заметны, вода отжимается частыми каплями светло-коричневого цвета, торф начинает слабо пачкать руку.

    Хорошо разложившийся

    Масса торфа продавливается слабо. Вода выделяется редкими каплями коричневого цвета.

    Сильно разложившийся

    Масса цвета продавливается между пальцами, пачкая руку. В торфе заметны лишь некоторые растительные остатки. Вода отживается в малом количестве, темно-коричневого цвета.

    Весьма сильно разложившийся

    Торф продавливается между пальцами в виде грязеподобной черной массы. Вода не отжимается. Растительные остатки совершенно неразличимы.

    Зольность торфов

    Зольность торфов имеет важное агрономическое значение, так как в составе золы присутствуют зольные элементы питания (Р, К, Са, Mg и др.). В то же время повышенное содержание оксидов железа, водорастворимых солей в составе золы торфа резко снижает его качество. Зольность торфов верховых болотных почв наиболее низкая (2-5%), низинных - составляет от 5-10% у обедненных (переходных) до 30-50% у высокозольных.

    В верховых болотных почвах состав и содержание зольных элементов определяются зольностью исходных растительных остатков, а в низинных в большой мере зависит от гидрогенной аккумуляции веществ и степени заиления торфа.

    Наиболее важными компонентами золы являются фосфор, калий, кальций. Фосфор в торфе содержится в основном в органической форме и в небольших количествах (0,1-0,4%), за исключением некоторых травянистых и ольшаниковых болот, в торфе которых фосфор может накапливаться в виде вивианита до 2-8% на сухое вещество торфа.

    Все виды торфа бедны калием. Содержание кальция в торфе верховых болот невелико, а в торфе низинных почв - в среднем 2-4%, достигая в карбонатных родах 30% и выше.

    В торфе определенных видов содержится значительное количество железа (5-20% и более в пересчете на Fe 2 O 3); в засоленных торфяных почвах содержится до 2% водорастворимых солей.

    Торфяные горизонты

    Торфяные горизонты болотных почв имеют специфические физические свойства: низкие показатели плотности, высокую влагоемкость, слабую

    водопроницаемость и теплопроводность. Влагоемкость низинного торфа колеблется от400 до 900%, верхового - от 1000 до 1200%.

    ГОСТ 11306-2013

    Группа А14

    МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

    ТОРФ И ПРОДУКТЫ ЕГО ПЕРЕРАБОТКИ

    Методы определения зольности

    Peat and products of its processing. Methods for determination of ash content


    Текст Сравнения ГОСТ 11306-2013 с ГОСТ 11306-83 см. по ссылке .
    - Примечание изготовителя базы данных.
    ____________________________________________________________________

    МКС 75.160.10

    Дата введения 2015-01-01

    Предисловие

    Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены"

    Сведения о стандарте

    1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 374 "Торф и торфяная продукция", Открытым акционерным обществом "Всероссийский научно-исследовательский институт торфяной промышленности" (ОАО "ВНИИТП")

    2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

    3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44-2013, приложение N 24доп)

    Краткое наименование страны
    по МК (ИСО 3166) 004-97

    Сокращенное наименование национального органа по стандартизации

    Киргизия

    Кыргызстандарт

    Росстандарт

    Узбекистан

    Узстандарт

    4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 2033-ст межгосударственный стандарт ГОСТ 11306-2013 введен в действие в качестве национального стандарта Российской Федерации с 01 января 2015 г.

    5 ВЗАМЕН ГОСТ 11306-83




    1 Область применения

    1 Область применения

    Настоящий стандарт распространяется на кусковой и фрезерный торф, торфяные, торфоугольные и другие композитные брикеты и полубрикеты, пеллеты (гранулы), удобрения, грунты и другие виды торфяной продукции топливного, сельскохозяйственного и природоохранного назначения и устанавливает методы определения их зольности.

    Для торфа и торфяной продукции топливного назначения метод заключается в озолении навесок продукции и прокаливании зольного остатка в муфельной печи в тиглях при температуре (800±25) °С.

    Для торфяных удобрений, грунтов и других видов торфяной продукции сельскохозяйственного и природоохранного назначения озоление навесок продукции и прокаливание зольного остатка в муфельной печи в тиглях производят при температуре (525±25) °С. При этом потерю массы при прокаливании принимают за массовую долю органического вещества.

    2 Нормативные ссылки

    В настоящем стандарте использованы ссылки на следующие стандарты:

    ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

    ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

    ГОСТ 12.1.008-76 Система стандартов безопасности труда. Биологическая безопасность

    ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузо-разгрузочные. Общие требования безопасности

    ГОСТ 5396-77 Торф. Методы отбора проб
    _______________
    ГОСТ Р 54332-2011 "Торф. Методы отбора проб"


    ГОСТ 7328-2001 Гири. Общие технические условия

    ГОСТ 9147-80 Посуда и оборудование лабораторное фарфоровые. Технические условия

    ГОСТ 11303-2013 Торф и продукты его переработки. Метод приготовления аналитических проб

    ГОСТ 21123-85 Торф. Термины и определения

    ГОСТ 24104-2001 Весы лабораторные. Общие технические требования
    _______________
    На территории Российской Федерации действует ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания"


    ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные

    Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

    3 Термины и определения

    3.1 Термины и определения, используемые в стандарте - по ГОСТ 21123 .

    4 Общие положения

    4.1 Отбор и подготовка проб для проведения лабораторных испытаний - по ГОСТ 5396 .

    5 Оборудование и аппаратура

    5.1 При определении зольности торфа используется следующее оборудование и аппаратура:

    печь муфельная с электрическим обогревом, с устойчивой температурой нагрева (800±25) °С с терморегулятором;

    термопара ТХА по НТД с пределом измерений до 1000 °С, с милливольтметром или другую аналогичную термопару;

    тигли фарфоровые низкой формы по ГОСТ 9147 N 5 или 6 для определения зольности лабораторных проб и N 3 для определения зольности аналитических проб торфа. Новые тигли, применяемые впервые, должны быть предварительно пронумерованы и прокалены до постоянной массы. Тигли должны храниться в эксикаторе с влагопоглощающим веществом. Массу тиглей проверяют при определении зольности лабораторной пробы не реже одного раза в 5 суток, а при определении зольности аналитической пробы - каждый раз перед набором навески;

    весы лабораторные по ГОСТ 24104 1 или 2-го классов для аналитических и лабораторных проб топливного торфа, 3-4-го классов - для всех остальных видов продукции, с гирями по ГОСТ 7328 ;

    эксикатор по ГОСТ 25336 с гранулированным хлористым кальцием или плавленым. Влагопоглощающее вещество обновляют при начале расплывания;

    шпатель, щипцы тигельные, ложку или челнок для отбора навесок.

    6 Метод определения зольности торфа и торфяной продукции топливного назначения

    6.1 Определение зольности в аналитической пробе

    6.1.1 Подготовка к испытанию

    Определение зольности проводят параллельно в двух навесках.

    Тигли должны быть пронумерованы, высушены и взвешены. Массу тиглей проверяют перед каждым определением зольности.

    Аналитическую пробу торфа или торфяной продукции с частицами размером не более 3 мм, приготовленную по ГОСТ 5396 и ГОСТ 11303 , перемешивают в открытой банке шпателем или ложкой, после чего берут навески торфа массой 2-8 г в предварительно взвешенные тигли N 3, 5 или 6 в зависимости от степени разложения торфа.*

    ______________
    * Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.


    Навеску берут челноком на всю глубину слоя торфа в банке или ложкой из пробы на разной глубине из двух-трех мест.

    6.1.2 Проведение испытания

    Тигли с навесками торфа закрывают крышками и ставят на под холодной или нагретой до температуры 200-250 °С муфельной печи (под печи заполняют тиглями не более чем на половину), закрывают дверцу. Через 15 мин открывают дверцу, снимают крышки с тиглей и нагревают печь до температуры (800±25) °С. При этой температуре продолжают прокаливание в закрытой муфельной печи до полного озоления нелетучего остатка в течение 3 ч.

    После прокаливания тигли с золой вынимают из муфельной печи, охлаждают на асбестовом листе 5 мин, а затем в эксикаторе до комнатной температуры и взвешивают.

    6.1.3 Для контроля тигли с зольным остатком дополнительно прокаливают в течение 40 мин при температуре (800±25) °С. После охлаждения и взвешивания определяют изменение массы. Если изменение массы в сторону уменьшения или увеличения будет менее 0,005 г, то испытание заканчивают и для расчета принимают последнюю массу. При уменьшении массы на 0,005 г и более тигли с зольным дополнительно прокаливают (каждое в течение 40 мин) до тех пор, пока разность в массе при двух последовательных взвешиваниях будет менее 0,005 г.

    Все взвешивания проводят с точностью до 0,0002 г.

    7 Метод определения зольности торфяной продукции сельскохозяйственного и природоохранного назначения

    7.1 Подготовка к испытанию

    Подготовку пробы проводят в соответствии с п.6.1.1.

    7.2 Проведение испытания

    Тигли с навесками торфа закрывают крышками и ставят на под холодной или нагретой до температуры 200-250°С муфельной печи (под печи заполняют тиглями не более чем на половину), закрывают дверцу. Через 15 мин открывают дверцу, снимают крышки с тиглей и постепенно в течение 1 ч нагревают печь до температуры (525±25) °С. При этой температуре продолжают прокаливание закрытой муфельной печи до полного озоления нелетучего остатка (до прекращения искрения) в течение 3 ч.

    Наблюдение ведут через смотровое отверстие.

    После прокаливания тигли с золой вынимают из муфельной печи, охлаждают на асбестовом листе в течение 5 мин, а затем в эксикаторе до комнатной температуры и взвешивают. Несгоревшие частицы дополнительно выжигают. Для этого в тигли добавляют несколько капель горячей дистиллированной воды температурой более 90 °С или 3%-ного раствора и повторно прокаливают при температуре (525±25) °С в течение 1 ч, охлаждают в эксикаторе и взвешивают с точностью до 0,001 г.

    8 Обработка результатов

    8.1 Зольность аналитической пробы ( ) вычисляют в процентах по формуле:

    где - масса зольного остатка, г;

    - масса навески испытуемого торфа, г.

    8.2 Зольность абсолютно сухого торфа (), %, вычисляют по формуле:

    где - влага аналитической пробы, %.

    8.3 Зольность торфа в рабочем состоянии () вычисляют по формуле:

    где - массовая доля общей влаги в рабочем состоянии по испытуемой пробе, %;

    8.4 За окончательный результат испытания принимают среднее арифметическое значение двух параллельных определений в пределах допускаемых расхождений.

    8.5 Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, указанных в таблице 1.

    Таблица 1 - Расхождение результатов испытаний

    Зольность

    Расхождение результатов испытаний, проводимых, %

    в одной лаборатории

    в разных лабораториях

    От 8,0 до 20,0


    Примечание - Предел допускаемых значений от 0,2 до 1,5% при доверительной вероятности Р =0,9 по .


    Если расхождение между результатами двух параллельных определений превышает допускаемые значения, проводят третье определение, и за окончательный результат испытания принимают среднее арифметическое результатов двух наиболее близких определений в пределах допустимых расхождений.

    Если результат третьего определения находится в пределах допускаемых расхождений по отношению к результатам каждого из двух предыдущих определений, то за окончательный результат испытания принимают среднее арифметическое результатов трех определений.

    Вычисление результатов испытания проводят до второго десятичного знака.

    8.6. Массовую долю органического вещества в процентах вычисляют по формуле:

    где - массовая доля золы, %.

    9 Требования безопасности

    9.1 При выполнении испытания опасными производственными факторами являются возможность поражения электрическим током и наличие высокой температуры. К выполнению работ допускаются лица, прошедшие инструкцию по технике безопасности.

    9.2 Торф не является токсичным продуктом. По степени воздействия на организм человека торфяная пыль относится к нетоксичным веществам 4-го класса опасности фиброгенного действия по ГОСТ 12.1.005 . При работе с торфом следует соблюдать требования безопасности по ГОСТ 12.1.008 .

    9.3 Общие санитарно-гигиенические требования к воздуху рабочей зоны при проведении испытаний должны соответствовать требованиям

    УДК 622.331.543:006.354 МКС 75.160.10 А14

    Ключевые слова: торф, пробы, приготовление пробы, зола, озоление

    __________________________________________________________________________

    Электронный текст документа
    подготовлен АО "Кодекс" и сверен по:
    официальное издание

    М.: Стандартинформ, 2014