В переводе с греческого языка означает «измерять тепло». История изобретения термометра берет начало с 1597 года, когда Галилей создал термоскоп – шарик с припаянной трубкой – для определения степени нагретости воды. Этот прибор не имел шкалы, а его показания зависели от атмосферного давления. С развитием науки термометр видоизменялся. Жидкостный термометр впервые был упомянут в 1667 году, а в 1742 году шведский физик Цельсий создал термометр со шкалой, в которой точка 0 соответствовала температуре замерзания воды, а 100 – температуре ее кипения.

Мы часто пользуемся термометром для определения температуры воздуха на улице или температуры тела, однако этим применение термометра вовсе не ограничивается. На сегодняшний день существует множество способов измерить температуру вещества, а современные термометры совершенствуются до сих пор. Опишем наиболее распространенные типы измерителей температуры.

Принцип действия данного типа термометров основан на эффекте расширения жидкости при нагревании. Термометры, у которых в качестве жидкости используется ртуть, часто применяются в медицине для измерения температуры тела. Несмотря на токсичность ртути, ее использование позволяет определять температуру с большей точностью по сравнению с другими жидкостями, так как расширение ртути происходит по линейному закону. В метеорологии используют термометры на спирту. Это связано в первую очередь с тем, что ртуть загустевает при значении 38 °С и не годится для измерения более низких температур. Диапазон жидкостных термометров в среднем составляет от 30 °С до +600 °С, а точность не превышает одну десятую долю градуса.

Газовый термометр

Газовые термометры работают по тому же принципу, что и жидкостные, только в качестве рабочего вещества в них используется инертный газ. Этот тип термометра является аналогом манометра (прибора для измерения давления), шкала которого градуируется в единицах температуры. Основным преимуществом газового термометра является возможность измерения температур около абсолютного нуля (его диапазон составляет от 271 °С до +1000 °С). Предельно достижимая точность измерения составляет 2*10 -3 °С. Получение высокой точности газового термометра является сложной задачей, поэтому такие термометры не используются в лабораторных измерениях, а применяются для первичного определения температуры вещества.

Этот вид термометров работает по аналогии с газовыми и жидкостными. Температура вещества определяется в зависимости от расширения металлической спирали или ленты из биметалла. Механический термометр отличается высокой надежностью и простотой в использовании. Как самостоятельные приборы такие термометры широкого распространения не получили и в настоящее время используются в основном в качестве устройств для сигнализации и регулирования температуры в системах автоматизации.

Электрический термометр (термометр сопротивления)

В основу работы электрического термометра заложена зависимость сопротивления проводника от температуры. Сопротивление металлов линейно увеличивается с ростом температуры, поэтому именно металлы и используются для создания этого типа термометров. Полупроводники по сравнению с металлами дают большую точность измерений, однако термометры на их основе практически не выпускаются из-за сложностей, связанных с градуировкой шкалы. Диапазон термометров сопротивления напрямую зависит от рабочего металла: например, для меди он составляет от -50 °С до +180 °С, а для платины – от -200 °С до +750 °С. Электрические термометры устанавливают в качестве датчиков температуры на производстве, в лабораториях, на экспериментальных стендах. Они часто комплектуются совместно с другими измерительными устройствами

Также называют термопарным. Термопара представляет из себя контакт двух разных проводников, измеряющих температуру на основе эффекта Зеебека, открытого в 1822 году. Этот эффект состоит в появлении разницы потенциалов на контакте между двумя проводниками при наличии между ними градиента температур. Таким образом, через контакт при изменении температуры начинает проходить электрический ток. Преимуществом термопарных термометров является простота исполнения, широкий диапазон измерений, возможность заземления спая. Однако есть и недостатки: термопара подвержена коррозии и другим химическим процессам со временем. Максимальной точностью обладают термопары с электродами из благородных металлов и их сплавов – платиновые, платинородиевые, палладиевые, золотые. Верхняя граница измерения температуры с помощью термопары составляет 2500 °С, нижняя – около -100 °С. Точность измерения термопарного датчика может достигать 0,01 °С. Термометр на основе термопар незаменим в системах управления и контроля на производстве, а также при измерении температуры жидких, твердых, сыпучих и пористых веществ.

Волоконно-оптический термометр

С развитием технологий изготовления оптоволокна, возникли новые возможности его использования. Датчики на основе оптоволокна проявляют высокую чувствительность к различным изменениям во внешней среде. Малейшее колебание температуры, давления или натяжения волокна приводят к изменениям распространения в нем света. Оптоволоконные датчики температуры часто применяются для обеспечения безопасности на производстве, для пожарного оповещения, контроля герметичности емкостей с огнеопасными и токсичными веществами, обнаружения утечек и т. п. Диапазон таких датчиков не превышает +400 °С, а максимальная точность составляет 0,1 °С.

Инфракрасный термометр (пирометр)

В отличие от всех предыдущих типов термометров, является бесконтактным прибором. Более подробно прочитать про пирометры и его характеристики можно в отдельной на нашем сайте. Технический пирометр способен измерять температуру в диапазоне от 100 °С до 3000 °С, с точностью до нескольких градусов. Инфракрасные термометры удобны не только в условиях производства. Все чаще они применяются для измерения температуры тела. Это связано со многими преимуществами пирометров по сравнению с ртутными аналогами: безопасность использования, высокая точность, минимальное время на измерение температуры.

В завершение отметим, что сейчас сложно представить себе жизнь без этого универсального и незаменимого прибора. Простые термометры можно встретить в быту: они используются для поддержания температуры в утюге, стиральной машине, холодильнике, измерения температуры окружающего воздуха. Более сложные датчики устанавливают в инкубаторах, теплицах, сушильных камерах, на производстве.

Выбор термометра или датчика температуры зависит от сферы его использования, диапазона измерения, точности показаний, габаритных размеров. А в остальном – все зависит от вашей фантазии.

Существует немало разновидностей термометров. У каждого вида свои особенности и преимущества. Одним из наиболее востребованных измерителей является газовый термометр. Этот прибор отличается своей практичностью и долговечностью в эксплуатации. Изготавливаются эти приборы преимущественно из стекла или кварца, поэтому температура, которую он измеряет, должна быть низкой либо не слишком высокой. Современные модели отличаются от своих предшественников, но принципиальных изменений в работе новых приборов нет.

Особенности

Газовый термометр - это аналог манометра (измеритель давления). Зачастую используют измерители постоянного объема. В таких приборах температура газа меняется в зависимости от давления. Предел таким термометром составляет 1 300 К. Представленные виды термометра отличаются широким спросом. Тем более что на современном рынке представлены новые, усовершенствованные модели.

Принцип работы газового термометра идентичен жидкостному измерителю и основан на эффекте расширения жидкости при нагреве, только в качестве рабочего вещества здесь используется инертный газ.

Преимущества

Прибор позволяет измерять температуру в границах от 270 и до 1 000 градусов. Также стоит отметить высокую точность работы прибора. Газовый термометр имеет сильную сторону - надежность. По стоимости приборы довольно демократичные, но цена будет зависеть от производителя и качества работы устройства. При покупке прибора лучше не экономить и приобрести действительно качественный вариант, который будет точен в работе и прослужит максимально долго и эффективно.

Сфера применения

Газовый измеритель служит для определения температуры веществ. Может использоваться в специализированных лабораториях. Наиболее точный результат показывается, когда веществом выступает гелий или водород. Также данным видом термометров пользуются, чтобы измерить работу других устройств.

Нередко газовые термометры постоянного объема применяются для вириального коэффициента. Данный вид термометра может быть использован и для относительного измерения при помощи сдвоенного прибора.

Газовый термометр в основном используется для измерения температурных показателей определенных веществ. Этот прибор широко востребован в отрасли физики и химии. При использовании качественного газового термометра гарантирована высокая точность показателей. Этот вид измерителя температуры очень прост в использовании.

Вы находитесь в информационном каталоге нашего сайта, где представлена техническая информация общего характера. Для знакомства и поиска необходимой продукции перейдите на главную страницу или нажмите на данную ссылку для перехода в раздел термометры .

В общем случае, Термометр - устройство для измерения текущей температуры. Изобретателем термометра считают Галилея: в его собственных сочинениях нет описания этого прибора, но известно, что уже в 1597 г. он создал некий прибор, напоминающий термометр. Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления. В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.
Существует огромное количество видов термометров - электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные - спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.

Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Многие компании занимаются оптовой и розничной продажей термометров российских и иностранных производителей, существуют специализированные магазины и интернет-магазины, реализующие данные приборы и способные удовлетворить потребность в приборах практически любого вида этого типа. Наиболее популярно производство и продажа простых моделей измерительного оборудования. Цены на такие приборы более чем доступны. Широкий ассортимент контрольно-измерительной температурной техники и комплексные решения в области метрологии предлагаются теперь не только в Москве, но во многих крупных городах России.

Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр - прибор инерционный, и время установления его показаний составляет 10 - 20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.

  • Жидкостные
    Жидкостный термометр - это, как правило, термометр из стекла (стеклянный термометр), увидеть который можно практически везде. Жидкостные термометры бывают как бытовыми, так и техническими (термометр ттж - термометр технический жидкостный). Жидкостный термометр работает по простой схеме - объем жидкости внутри термометра изменяется при изменении температуры вокруг нее. Жидкость, находящаяся в термометре, занимает меньший объем капилляра при низкой температуре, а при высокой температуре жидкость в столбике термометра начинает увеличиваться в объеме, тем самым будет расширяться, и подниматься вверх. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть. Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости, шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/С (для некоторых специальных термометров 100…200 мм/°С). Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до 600°С. При монтаже стеклянного технического жидкостного термометра его часто помещают в защитную металлическую оправу для изоляции прибора от измеряемой среды. Для уменьшения инерционности измерения в кольцевой зазор между термометром и стенкой оправы при измерении температуры до 150°С заливают машинное масло; при измерении более высоких температур в зазор насыпают медные опилки. Как любые другие точные приборы, промышленные технические термометры требуют проведения регулярной поверки.
  • Манометрические
    Действие манометрических термометров основано на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и собственно манометра. В зависимости от заполняющего вещества манометрические термометры делятся на газовые (термометр ТПГ, термометр ТДГ и др.), парожидкостные (термометр ТПП) и жидкостные (термометр ТПЖ, термометр ТДЖ и др.). Область измерения температур манометрическими термометрами колеблется в диапазоне от -60 до +600°С.
    Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты.
    Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40 м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами, речь идет о так называемых дистанционных термометрах.
    Наиболее уязвимы в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты.
  • Сопротивления
    Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.
    Металлические термометры сопротивления изготовляют из тонкой медной или платиновой проволоки, помещенной в электроизоляционный корпус. Зависимость электрического со противления от температуры (для медных термометров диапазон от -50 до +180 С, для платиновых диапазон от -200 до +750 С) весьма стабильна и воспроизводима. Это обеспечивает взаимозаменяемость термометров сопротивления. Для защиты термометров сопротивления от воздействия измеряемой среды применяют защитные чехлы. Приборостроительная промышленность выпускает много модификаций защитных чехлов, рассчитанных на эксплуатацию термометров при различном давлении (от атмосферного до 500 105 Па), различной агрессивности измеряемой среды, обладающих разной инерционностью (от 40 с до 4 мин) и глубиной погружения (от 70 до 2000 мм).
    Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.
    Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом - электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
  • Термоэлектрические
    Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения - спая. Проводники в этом случае называются термоэлектродами, а все устройство - термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.
    В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом - автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.
    Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу - сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.
    Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.
    Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.
    В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.
    Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т. п.
  • Электронные
    Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.
    Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно - на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте - стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр - не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.
    Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т. е. падения напряжения на диоде при протекании через него прямого тока - от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.
    Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.
    Электронные термометры способны измерять температуру в диапазоне от -50 до 100 С Питается электронный термометр стабильным напряжением, которое получается благодаря включению в цепь батареи.
  • Электроконтактные
    Электроконтактные термометры предназначены для сигнализации о заданной температуре и для включения или выключения соответствующего оборудования при достижении этой температуры. Электроконтактные термометры могут работать в системах для поддержания постоянной (заданной) температуры от -35 до +300°С в различных промышленных, лабораторных, энергетических и других установках.
    Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:
    термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы).
    Электроконтактные термометры типа ТПК с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.
    Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.
    Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диа¬пазоне всего интервала температур.
    Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая на¬грузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термокон¬такторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
  • Цифровые
    Цифровые, как и любые другие термометры, - это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
  • Конденсационные
    Конденсационные термометры реализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейные, следовательно, и шкалы термометров неравномерны. Однако эти приборы обладают более высокой чувствительностью, чем, например, газовые жидкостные. В конденсационных термометрах измеряют давление насыщенного пара над поверхностью жидкости, неполно заполняющей термосистему, т.к. изменение давления происходит непропорционально - приборы имеют неравномерные шкалы. Пределы измерений от -25 до 300 С.
  • Газовые
    В основу принципа действия газового термометра положена зависимость между температурой и давлением термометрического (рабочего) вещества, лишенного возможности свободно расширяться при нагревании. Газовые манометрические термометры основаны на зависимости температуры и давления газа, заключенного в герметически замкнутой термосистеме. В газовых термометрах (обычно постоянного объема) изменение температуры прямо пропорционально давлению в диапазоне измеряемых температур от - 120 до 600 °С. На измерении температуры газовыми термометрами построены современные температурные шкалы. Процесс измерения заключается в приведении баллона с газом в состояние теплового равновесия с теплом, температуру которого измеряют, и в восстановлении первоначального объема газа. Газовый термометр высокой точности - довольно сложное устройство. Необходимо учитывать не идеальность газа, тепловое расширение баллона и соединительной трубки, изменение состава газа внутри баллона (сорбцию и диффузию газов), изменение температуры вдоль соединительной трубки.
    Достоинства: шкала прибора практически равномерна.
    Недостатки: сравнительно большая инерционность и большие размеры термобаллона.
  • Спиртовые
    Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой - от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ± 0,05° С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
  • Биметаллические
    Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.
    В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
  • Кварцевые
    Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм РТ. Ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.
    Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.
    Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100 С из-за возрастающей невоспроизводимости.

Манометрические газовые термометры позволяют измерять температуру от -150 до +600°С. В качестве рабочего вещества в газовых термометрах используется азот. Перед заполнением всей термосистемы термометра азотом термосистема и газ должны быть хорошо просушены. Длина соединительного капилляра этих термометров

При постоянном объеме газа зависимость его давления от температуры определяется выражением

где давление газа при температуре термический коэффициент давления газа, (для идеального газа а для азота

При изменении температуры газа в термобаллоне термометра от 4 до будет изменяться и давление газа в соответствии с выражением

где давление газа при температуре, соответствующей началу и концу шкалы термометра.

Вычитая и прибавляя к правой части уравнения (3-2-2) значение после несложных преобразований получаем:

Из этого выражения видно, что размер рабочего давления в термосистеме газового термометра прямо пропорционален значению начального давления и диапазону измерения прибора. Следует отметить, что при повышении температуры термобаллона термометра объем термосистемы его увеличивается в основном за счет расширения термобаллона и увеличения объема внутренней полости манометрической пружины. При увеличении температуры газа, а вместе с тем и давления его происходит частичное перетекание газа из термобаллона в капилляр и манометрическую пружину. При понижении температуры газа в термобаллоне будет

происходить обратный процесс. Вследствие этого при измерении температуры газовым термометром постоянство объема газа в термосистеме не сохраняется. Поэтому зависимость между давлением газа в термосистеме и его температурой незначительно отклоняется от линейной и действительное давление газа в термосистеме при температуре будет меньше подсчитанного по формуле (3-2-2). Однако эта нелинейность зависимости между не играет существенной роли и шкала газового термометра получается практически равномерной.

Для увеличения рабочего давления (3-2-3) термосистему газового термометра заполняют азотом под некоторым начальным давлением в зависимости от диапазона измерения температуры [с диапазоном измерения начальное давление а с диапазоном измерения Поэтому колебания атмосферного давления на показаниях газового термометра не сказываются.

Для уменьшения изменения показаний газового термометра, вызываемого отклонением температуры окружающего воздуха от устанавливают термобиметаллический компенсатор в тягу передаточного механизма (рис. 3-2-1, а и 3-2-3), а также стремятся уменьшить отношение внутреннего объема пружины и капилляра к объему термобаллона. Это достигается увеличением объема, а следовательно, и размеров термобаллона. Например, при длине капилляра от 1,6 до длина корпуса термобаллона термометра выполняется равной а при длине капилляра до Диаметр термобаллона в том и другом случае равен Ввиду больших размеров термобаллона газовые термометры не везде могут быть применены.

Термометр – это высокоточное устройство, которое предназначается для измерения текущей температуры. В промышленности, термометром измеряют температуру жидкостей, газов, твердых и сыпучих продуктов, расплавов и.т.д. Термометры особенно часто применяют на производствах, где важно знать температуру сырья для правильного протекания технологических процессов, или в качестве одного из средств контроля готовой продукции. Это предприятия химической, металлургической, строительной, сельскохозяйственной отраслей, а также сфера производства продуктов питания.

В быту, термометры могут быть использованы в различных целях. Например, существуют уличные термометры для деревянных и пластиковых окон, комнатные термометры, термометры для бань и саун. Приобрести термометры можно для воды, чая, и даже для пива и вина. Существуют термометры для аквариума, специальные термометры для почвы, и инкубаторов. В продаже имеются также термометры для морозильных камер, холодильников и погребов и подвалов.
Установить термометр, как правило, технологически не сложно. Однако, не стоит забывать, что только выполненная по всем правилам установка термометра гарантирует надёжность и долговечность его работы. Следует также учитывать, что термометр — прибор инерционный, т.е. время установления его показаний составляет около 10 — 20 минут, в зависимости от требуемой точности. Поэтому не ожидайте, что термометр изменит свои показания в тот же момент, как только он будет вынут из упаковки или установлен.
По конструктивным особенностям выделяют следующие виды термометров:

Жидкостный термометр — это, тот самый стеклянный термометр, который можно увидеть практически повсеместно. Жидкостные термометры могут быть как бытовыми, так и техническими (например, термометр ттж — термометр технический жидкостный). Жидкостный термометр работает по самой простой схеме — при изменении температуры, объем жидкости внутри термометра изменяется и при увеличении температуры – жидкость расширяется и ползет вверх, а при уменьшении — наоборот. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть.

Манометрические термометры предназначены для дистанционного измерения и регистрации температуры газов, паров и жидкостей. В некоторых случаях манометрические термометры изготавливаются со специальными устройствами, преобразующими сигнал в электрический и позволяющими производить регулирование температуры.

В основу действия манометрических термометров положена зависимость давления рабочего вещества в замкнутом объеме от температуры. В зависимости от состояния рабочего вещества различают газовые, жидкостные и конденсационные термометры.

Конструктивно они представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с манометром. Термобаллон погружается в объект измерения и при изменении температуры рабочего вещества происходит изменение давления в замкнутой системе, которое через капиллярную трубку передается на манометр. В зависимости от назначения манометрические термометры бывают самопишущими, показывающими, бесшкальными со встроенными преобразователями для дистанционной передачи измерений.

Достоинство данных термометров является возможность их применения на взрывоопасных объектах. К недостаткам относится невысокий класс точности измерения температуры (1,5, 2,5), необходимость частой периодической поверки, сложность ремонта, большие размеры термобаллона.

Термометрическим веществом для газовых манометрических термометров служит азот или гелий. Особенностью таких термометров является достаточно большой размер термобаллона и, как следствие, значительная инерционность измерений. Диапазон измерения температур составляет от -50 до +600°С, шкалы термометров равномерны.

Для жидкостных манометрических термометров термоэлектрическим веществом является ртуть, толуол, пропиловый спирт и т.д. Благодаря большой теплопроводности жидкости, такие термометры менее инерционны по сравнению с газовыми, но при сильных колебаниях температур окружающей среды погрешность приборов выше, вследствие чего при значительной длине капилляра для жидкостных манометрических термометров применяют компенсационные устройства. Диапазон измерения температур (при ртутном заполнении) составляет от -30 до +600°С, шкалы термометров равномерны. В конденсационных манометрических термометрах применяются легкокипящие жидкости пропан, этиловый эфир, ацетон и т.д. Заполнение термобаллона происходит на 70%, оставшуюся часть занимает пар термоэлектрического вещества.

Принцип работы конденсационных термометров основан на зависимости давления насыщенного пара низкокипящей жидкости от температуры, что исключает влияние изменения температуры окружающей среды на показания термометров. Термобалоны данных термометров достаточно малы, как следствие, эти термометры наименее инерционны из всех манометрических термометров. Также конденсационные манометрические термометры обладают высокой чувствительностью, связи с нелинейной зависимостью давления насыщенного пара от температуры. Диапазон измерения температур составляет от -50 до +350°С, шкалы термометров не равномерны.

Термометр сопротивления работает благодаря известному свойству тел изменять электрическое сопротивление при изменении температуры. Причем, в металлических термометрах сопротивление при увеличении температуры возрастает практически линейно. В полупроводниковых термометрах сопротивление наоборот, уменьшается.

Металлические термометры сопротивления изготавливаются из помещенной в электроизоляционный корпус тонкой медной или платиновой проволоки.

Принцип действия термоэлектрических термометров основывается на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения — спая. В этом случае, проводники называют термоэлектродами, а всю конструкцию — термопарой. При этом, величина термоэлектродвижущей силы термопары зависит от материала, из которого сделаны термоэлектроды, и разности температур горячего спая и холодных спаев. Поэтому, при измерении температуры горячего спая температуру холодных спаев или стабилизируют или вводят поправку на ее изменение.

Такие приборы позволяют измерять температуру дистанционно — на расстоянии в несколько сотен метров. При этом, в контролируемом помещении располагается только совсем небольшой термочувствительный датчик, а другом помещении – индикатор.

предназначаются для сигнализации о заданной температуре, и при её достижении — для включения или выключения соответствующего оборудования. Электроконтактные термометры применяются в системах поддержания постоянной температуры от -35 до +300°С в различных лабораторных, промышленных, энергетических и других установках.

Электроконтактные термометры изготавливаются на заказ, по техническим условиям предприятия. Такие термометры конструктивно делятся на 2 вида:

— Термометры с переменной, устанавливаемой вручную, температурой контактирования,

— Термометры с постоянной или заданной температурой контактирования. Это, так называемые термоконтакторы.

Цифровые термометры — это высокоточные, высокоскоростные современные приборы. Основой цифрового термометра служит аналого-цифровой преобразователь, который работает по принципу модуляции. Параметры цифрового термометра полностью зависят от установленных датчиков.

Конденсационные термометры работают, используя зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Эти приборы обладают более высокой чувствительностью, чем другие, обычные термометры. Однако, поскольку зависимость упругости паров для используемых жидкостей, таких как, этиловый эфир, хлористый метил, хлористый этил, ацетон, являются нелинейными, то, как следствие, шкалы термометров нанесены неравномерно.

Газовый термометр действует по принципу зависимости между температурой и давлением термометрического вещества, лишенного возможности свободного расширения при нагревании в замкнутом пространстве.

Его работа строится на различиях теплового расширения веществ, из которых изготавливаются пластины применяемых чувствительных элементов. Биметаллические термометры массово применяются на морских и речных судах, промышленности, атомных электростанциях, для измерения температуры в жидких и газообразных средах.

Биметаллический термометр составлен из двух тонких лент металла, к примеру медной и железной, при нагревании которых, их расширение происходит неодинаково. Плоские поверхности лент плотно скреплены между собой, при этом, биметаллическая система из двух лент, скручена в спираль, а один из концов такой спирали жестко закреплен. При охлаждении или нагревании спирали, ленты, изготовленные из разных металлов, сжимаются или расширяются в разной степени. Как следствие, спираль или скручивается, или раскручивается. Прикрепленный к свободному концу спирали указатель, отображает результаты измерений.

КВАРЦЕВЫЕ ТЕРМОМЕТРЫ

Кварцевые термометры работают, основываясь на температурной зависимости резонансной частоты пьезокварца. Существенным недостатком кварцевых термометров является их инерционность, которая достигает нескольких секунд, и нестабильность при работе с температурой выше 100oC.