Этот простой и дешёвый USB осциллограф был придуман и сделан просто ради развлечения. Давным давно довелось чинить какой-то мутный видеопроцессор, в котором спалили вход вплоть до АЦП. АЦП оказались доступными и недорогими, я купил на всякий случай парочку, один пошёл на замену, а другой остался.


Недавно он попался мне на глаза и почитав документацию к нему я решил употребить его для чего-нибудь полезного в хозяйстве. В итоге получился вот такой приборчик. Обошёлся в копейки (ну рублей 1000 примерно), и пару выходных дней. При создании я постарался уменьшить количество деталей до минимума, при сохранении минимально необходимой для осциллографа функциональности. Сначала я решил, что получился какой-то уж больно несерьёзный аппарат, однако, сейчас я им постоянно пользуюсь, потому что он оказался весьма удобным - места на столе не занимает, легко помещается в карман (он размером с пачку сигарет) и обладает вполне приличными характеристиками:

Максимальная частота дискретизации - 6 МГц;
- Полоса пропускания входного усилителя - 0-16 МГц;
- Входной делитель - от 0.01 В/дел до 10 В/дел;
- Входное сопротивление - 1 МОм;
- Разрешение - 8 бит.Принципиальная схема осциллографа показана на рисунке 1.

Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц - более чем достаточно.

Кнопка S2 - это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты. В качестве АЦП (IC3) была использована "телевизионная" микросхема - TDA8708A. Она вполне доступна во всяких "Чип и Дип"ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого - чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр - частота дискретизации - 30 МГц. В схеме он работает на тактовой частоте 12 МГц - быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота - тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC"а - там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC"а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC"а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения. Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах - делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc - 2.41В до Vcc - 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был "лишний" усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме - нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто - входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе - входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:
1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке (может проявиться ёмкость монтажа конденсаторов), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ - это Analog Devices AD823. Самая дорогая часть осциллографа. :) Но зато полоса 16 МГц - что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904, но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) - то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660. Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе. Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC - залейте туда сначала бутлоадер - будет проще менять прошивки.
Исходники драйвера осциллографа для ядер 2.6.X находятся в архиве с прошивкой. Там же есть консольная утилитка для проверки работоспособности осциллографа. Её исходники стоит посмотреть, чтобы разобраться как общаться с осциллографом, если хочется написать для него свой софт.
Программа для компьютера проста и аскетична, ее вид показан на рисунках 2 и 3. Подключить осциллограф к USB и запустить qoscilloscope. Требуется QT4.

Во вложении- все файлы к проекту

Сегодня часто вместо того, чтобы сделать, например, осциллограф из компьютера, большинство людей предпочитают просто приобрести USB-осциллоскоп. Но, пройдясь по магазинам, можно увидеть, что цена бюджетных осциллографов начинается от 200 долларов. А серьезная аппаратура и вовсе стоит в разы дороже. Именно тем людям, которых не устраивает эта цена, проще всего сделать осциллограф из ноутбука или компьютера своими руками.

Что необходимо использовать

Самая оптимальная сегодня – это программа Osci , она имеет интерфейс, похожий на классический осциллограф: на мониторе находится стандартная сетка, с помощью которой вы сможете сами померить амплитуду или длительность.

Из недостатков этой программы можно выделить то, что она работает немного нестабильно. Во время работы утилита может иногда зависать, а чтобы затем ее сбросить, надо использовать специализированный TaskManager. Но все это компенсируется тем, что программа имеет привычный интерфейс, и довольно удобна в использовании, а также имеет большое количество функций, они дают возможность сделать полноценно работающий осциллограф из компьютера или ноутбука.

На заметку

Нужно сказать, что в комплекте данных программ есть специальный низкочастотный генератор , но его использование нежелательно, он пытается полностью сам контролировать работу драйвера звуковой карты, что провоцирует выключение звука. Если решили его опробовать, позаботьтесь, чтобы у вас была точка восстановления либо сделайте бэкап вашей ОС. Самым оптимальным способом, как сделать своими руками из компьютера осциллограф, будет скачивание рабочего генератора.

«Авангард»

Это отечественная программа, она не имеет привычной и стандартной измерительной сетки, и отличается очень большим экраном для фотографирования скриншотов, но в то же время позволяет использовать установленный частотомер и вольтметр амплитудных значений. Это частично компенсирует недостатки, указанные выше.

Сделав этот осциллограф из компьютера, вы столкнетесь со следующим: на небольших уровнях показателей вольтметр и частотомер могут значительно искажать данные, но для новичков-радиолюбителей, эта утилита будет вполне достаточной. Еще одной полезной функцией будет то, что можно делать абсолютно независимую калибровку двух уже находящихся шкал установленного вольтметра.

Как это использовать

Из-за того, что входные цепи звуковой карты имеют специальный разделительный конденсатор, то компьютер в роли осциллографа может работать только с закрытым входом . Таким образом, на мониторе будет видна лишь переменная составляющая показателей, но, имея определенную сноровку, с помощью этих программ можно сделать измерение показателя постоянной составляющей. Это очень актуально в случае, когда, к примеру, время отсчета мультиметра не дает возможности зафиксировать некоторое значение амплитуды напряжения на конденсаторе, заряжающегося с помощью крупного резистора.

Нижнее значение напряжения ограничивается уровнем фона и шума и имеет примерно 1 мВ. Верхний предел ограничивается лишь по показателям делителя и достигает более сотни вольт. Частотный диапазон ограничивается самой возможностью звуковой карты и для старых компьютеров составляет около 20 кГц .

Естественно, в этом случае рассматривается довольно примитивное устройство. Но когда у вас нет возможности, например, использовать USB-осциллограф, то в данном случае его использование вполне приемлемо. Этот прибор поможет вам в ремонте разной аудиоаппаратуры, или может быть использован для учебных целей. Кроме того, программа-осциллограф даст возможность вам сохранить эпюру для иллюстрации материала или для размещения в сети.

Электрическая схема

Если вам необходим приставка к компьютеру, то сделать осциллограф будет гораздо сложнее. Сегодня в интернете можно отыскать довольно большое количество разных схем этих устройств, и для изготовления, например, двухканального осциллографа вам будет необходимо только их продублировать. Второй канал зачастую актуален в случае, когда надо сравнивать два сигнала или же осциллограф используется для подключения внешней синхронизации .

Как правило, схемы очень простые, но так, вы самостоятельно обеспечите очень большой диапазон доступных измерений, используя минимум радиодеталей. Причем аттенюатор, который изготавливается по классической схеме, потребовал бы от вас наличие узкоспециализированных высокомегаомных резисторов, а его сопротивление на входе все время менялось при переключении диапазона. Поэтому вы бы испытывали некоторые ограничения при использовании обычных осциллографических проводов, рассчитанных на импеданс входа не больше 1 мОм.

Как выбрать резисторы делителя напряжения

Из-за того, что зачастую радиолюбители испытывают сложности с тем, чтобы подобрать прецизионные резисторы, часто бывает так, что приходится выбирать устройства широкого профиля, которые надо максимально точно подогнать , иначе сделать своими руками осциллограф из компьютера не получится.

Подстроечные резисторы делителя напряжения

В этом случае каждое плечо делителя имеет два резистора, один является постоянным, второй – подстроечный. Минус этого варианта, это его громоздкость, но точность ограничивается лишь тем, какие доступные характеристики имеет измерительный аппарат.

Как выбрать обычные резисторы

Еще один вариант сделать осциллограф из компьютера – это выбрать пары резисторов. Точность в этом случае обеспечивается благодаря тому, что используются пары из двух комплектов с довольно приличным разбросом. Тут важно изначально выполнить тщательные замеры всех устройств, а после подобрать пары, суммарное сопротивление которых будет самым подходящим для вашей схемы.

Сегодня подгонка резисторов с помощью удаления части пленки часто используется даже в современной промышленности, то есть так, нередко делается осциллограф из компьютера.

Но нужно сказать, что если вы хотите подгонять высокоомные резисторы, то резистивная пленка не должна быть разрезана насквозь. Так как в этих устройствах она находится на цилиндрической поверхности в виде спирали, потому делать подпил надо предельно аккуратно, чтобы не допустить разрыва цепи . Затем:

После, когда резистор полностью подогнан, место пропила покрывают слоем специального защитного лака.

Сегодня этот способ наиболее быстрый и простой, но при этом дает хорошие результаты, что и сделало его оптимальным для домашних условий.

Что нужно учесть

Существует ряд правил, которые необходимо выполнять в любом случае, если решили проводить эти работы:

  • Используемый компьютер для осциллографа обязательно нужно заземлить.
  • Нельзя подключать заземление к розетке. Оно подсоединяется через специальный корпус линейного входного разъема с корпусом системного блока. В данном случае, независимо, попадаете ли вы в фазу или ноль, у вас не будет замыкания.

Говоря иначе, в розетку может подсоединяться только провод, который соединяется с резистором , и находится в схеме адаптера с номинальным значением один мегом. Если же вы попробуете включить в сеть провод, который контактирует с корпусом, то почти во всех случаях это обязательно приведет к самым плачевным последствиям.

В настоящее время тяжело угнаться за новейшими технологиями радиоэлектроники. Разнообразные электронные устройства можно теперь модифицировать по своему вкусу из одного в другое. Было бы желание и умение. Даже из старых электронных часов можно сделать простой тестер для многих деталей электросхемы, не говоря уже о планшетах и компьютерах. Многим радиолюбителям и профессионалам часто приходиться пользоваться точными электронными приборами, среди которых очень популярен осциллограф . Такой хороший прибор стоит недёшево. Хотя сделать его своими руками на основе планшета и андроида не составит особого труда даже радиолюбителю.

Что представляет собой осциллограф и его функции

Для тех кто не особо знаком с работой осциллографа и его визуальными видами поясню. Это прибор (в старом варианте типа мини-телевизора, в новом - дизайн планшета и т. п.), который измеряет и отслеживает частотные колебания в электрической сети. На практике он широко используется многими специализирующимися лабораториями и профессиональными радиотелемастерами. Поскольку точные настройки многих электроприборов производятся только с его помощью.

Его показания в электронной или бумажной форме позволяют видеть синусоидальные формы сигнала. Частота и интенсивность этого сигнала, в свою очередь, позволяет определить неисправность или неправильную сборку электросхемы. Сегодня мы рассмотрим двухканальный осциллограф, который можно собрать своими руками на основе действующих схем смартфона, планшета и соответственного программного обеспечения.

Сборка карманного осциллографа на основе «Андроида»

Замеряемая частота должна быть слышимой человеческим ухом, а уровень сигнала не должен превышать стандартного микрофонного звука. В этом случае, собрать осциллограф на основе «Андроида» своими руками можно и без дополнительных модулей. Разбираем гарнитуру , на которой присутствует микрофон. При отсутствии этой гарнитуры необходимо приобрести звуковой штекер на 3,5 мм с четырьмя контактами. Щупы припаять согласно разъёмам вашего гаджета.

Загрузить программное обеспечение из «Маркета», которое будет замерять частоту микрофонного входа и вырисовывать график на основе этого сигнала. Представленных вариантов будет достаточно, чтобы выбрать оптимальный. После калибровки приложения - осциллограф будет готов к использованию.

Плюсы и минусы «Андроидной» сборки:

Сборка осциллографа из планшета

Для стабилизации сигнала и расширения диапазона входного напряжения можно использовать схему осциллографа для планшета. Она долго и успешно используется для сборки устройств для компьютера.

Для этого применяются стабилитроны КС 119 А с резисторами на 10 и 100 кОм. Первый резистор и стабилитроны подключают параллельно. Второй и более мощный резистор подключается на вход электросхемы. Это расширяет максимальный диапазон напряжений. В конечном счёте пропадают дополнительные помехи и повышается напряжение до 12 вольт.

Особенностью осциллографа из планшета является то, что он работает напрямую со звуковыми импульсами и лишние помехи (экранирование) схемы и щупов в этом случае будут нежелательны.

Нужное программное обеспечение для сборки осциллографа на основе планшета и андроида

Чтобы работать с подобной схемой потребуется программа, которая способна нарисовать графики на основе входящего звукового сигнала. Множество таких вариантов легко найти в «Маркете». С помощью них можно выбрать дополнительную калибровку и добиться максимальной точности для профессионального осциллографа из планшета или другого функционального устройства.

Широкодиапазонная частота с помощью отдельного гаджета

Широкий диапазон частот с помощью отдельного гаджета достигается его приставкой с аналогово-цифровым преобразователем, который обеспечивает передачу сигнала в цифровом варианте. За счёт этого достигается более высокая точность измерений. На практике - это портативный дисплей, который аккумулирует информацию с отдельных устройств.

Осциллограф из планшета на «Андроид»

Bluetooth-канал

В настоящее время электронного прогресса в магазинах появляются приставки, которые выполняют функции осциллографа. Они передают сигнал с помощь Bluetooth-канала на планшет или смартфон. Такой осциллограф - приставка, подключаемая, к планшету через Bluetooth имеет свои особенности. Предел измеряемой частоты, составляющий 1 МГц, напряжение щупа 10 В и радиус действия порядка 10 метров не всегда хватают для профессионального диапазона рабочей деятельности. В таких случаях можно использовать осциллограф - приставку с передачей данных с помощью Wi-Fi.

Передача данных с помощью Wi-Fi

Wi-Fi значительно расширяет возможности измерительных устройств. Такой вид обмена информацией между планшетом и приставкой особо популярен. Это не дань моде , а чистая практичность. Поскольку измеряемая информация передаётся без задержек на планшет, который моментально выводит любой график на свой монитор.

Понятное пользовательское меню позволяет быстро и легко ориентироваться в управлении и настройках электронного устройства. А записывающее устройство позволяет воспроизводить и передавать информацию в реальном времени и во все точки для всех участников этого процесса.

Обычно вместе с покупной осциллограф - приставкой поставляется и диск с программным обеспечением. Эти драйвера и программу можно быстро скачать на планшет или смартфон. Если такого диска нет - найдите эти данные в магазине приложений или поищите в интернете на форумах и специализированных сайтах.

USB осциллограф своими руками схема

Сборка USB осциллографа обойдётся вам всего в 250–300 рублей и сделать вы его можете своими руками.

Плюсами этого устройства являются его низкая себестоимость, мобильность и малогабаритность. А вот существенных минусов, к сожалению, побольше. Это малая частота дискретизации, наличие ПК, малая полоса пропускания и глубина памяти.

Для профессионалов такая электронная «игрушка» явно не подойдёт. А для начинающих радиолюбителей - это очень даже неплохой симулятор осциллографа для приобретения определённых практических навыков.

Поскольку интегрированный в микроконтроллер АЦП довольно медленный, было принято решение использовать внешний скоростной АЦП AD9280. В качестве дисплея используется WG12864A (128*64). Прошивка написана на С в компиляторе MikroC pro for AVR 5.60.

Характеристики осциллографа:

Входное сопротивление 100 кОм;

Максимальная частота дискретизации 9 МГц;

Минимальная частота 25 Гц;

Максимальная частота 500 кГц;

Минимальное напряжение +/- 0,25 В;

Максимальное напряжение +/- 25 В;

Напряжени е питания 9 В;

С правой стороны на экране отображается амплитудное значение напряжения, среднеквадратическое значение напряжения, частота в кГц, тип синхронизации и делитель. ATMEGA32 работает на повышенной частоте 26,601712 МГц. Кварц выпая л с денди. Для стабильной работы ATMEGA32 питается повышенным напряжением 5,4 В. Для этого в минусовой вывод стабилизатор а 7805 впаян о 2 диода Шоттки с падением на каждом 0,2 В. Если ATMEGA32 не будет стабильно работать на 26,601712 МГц, можно поставить кварц на 20 МГц или поставить внешний генератор на 32 МГц. При частотах, отличных от 26,601712 МГц необходимо изменить частоту в настройках проекта и подобрать другие константы для подсчета частоты. Стабилизатор 7805 необходимо поставить на радиатор. В качестве входного разъема используется з звуковой 3,5 мм. Микросхема ICL7660 делает отрицательное напряжение -5,4 В, котор о е необходим о для питания ОУ и для смещения переменного сигнала в плюсовой диапазон. В качестве ОУ я использовал LM358 , питал его напряжением 6,5 В от стабилитрон а . LM358 сильно искажа ет сигнал на частотах выше 20 к Гц. Прямоугольные импульсы на высоких частотах можно увидеть на фото.

ОУ необходимо использовать с частотой 10 МГц. Возможно, подойдет lm833. Если ОУ будет rail-to-rail, то можно питать его от 5,4 V. Например, MCP6H92.

Диапазоны переключаются трехпозиционным переключателем - 1:1 (25 V); 1:4 (10 V); 1:10 (2,5 V).

Для управления осциллографом используется 5 клавиш. Клавиши вверх/вниз используются для установления развертки по амплитуде. Клавиши влево/вправо предназначены для изменения частоты виб о рок АЦП. Центральная клавиша используется для входа в меню. В первом пункте выбирается тип отображения осциллограммы: по точкам или по линиям. Во втором пункте выставляется делитель в зависимости от переключателя диапазонов напряжения. Он необходим для правильного отображения напряжения. В третьем пункте выбирается тип синхронизации : по максим уму , по спаду фронта, переход через ноль.

Для настройки осциллографа необходимо выставить нужную контрастность дисплея переменным резистором и выставить линию на ноль (без сигнала на входе), предварительно увеличив рамах по амплитуде. На фото осциллограф со старой разводкой.

Схема и печатка обновленная версии V2

Схема и печатки обновления V3

Прежде чем приступить к описанию usb осциллограф своими руками на ATtiny45, необходимо отметить, что в конструкции используется только интегрированный АЦП преобразователь микроконтроллера ATmega45 с разрешением 10-бит, и в компьютер данные передаются посредством внедрения программного обеспечения V-USB с использованием драйверов USB HID, общая скорость передачи данных сильно ограничена.

Реальные выборки на обоих каналах до десятка выборок в секунду. Таким образом, это цифровой двухканальный низкоскоростной осциллограф на микроконтроллере.

V-USB является чисто программной реализации низкоскоростного USB протокол для процессоров серии AVR фирмы Atmel. Благодаря этим библиотекам можно с незначительными ограничениями применять USB практически с любым микроконтроллером, без необходимости использования дополнительного специального оборудования. Все библиотеки V-USB распространяются под лицензией GNU GPL v.2.

Два аналоговых входов способны измерять напряжение в диапазоне от 0 до +5 В. Широкий диапазон напряжения можно достичь путем добавления усилителя с высоким входным сопротивлением и переменным коэффициентом усиления (или входным резистивным делителем), или, по крайней мере с использованием обычного переменного резистора.

Всю основную работу выполняет запрограммированный микроконтроллер ATtiny45 . Работает он от внутреннего тактового генератора с предделителем с частотой 16,5 МГц. Для связи через интерфейс скоростного USB эта частота необходима, однако, это ведет к ограничению в минимальном напряжении питания, который должен быть выше, чем 4,5 В и, конечно, ниже, чем 5,5 В.

Но, поскольку выводы данных порта USB используют уровень напряжения от 0 до +3,3 В, то необходимо использовать ограничивающие резисторы R2, R3 и стабилитроны D2, D3. Такое решение, конечно, нельзя рекомендовать для коммерческого продукта, но для ознакомления с проблематикой USB и получение простой конструкции для домашнего использования вполне достаточно.

Входные каналы CH1 и CH2 на разъеме J2 блокируются конденсаторами С2 и C3 номиналом 100n в соответствии с требуемой спецификацией внутреннего АЦП. Светодиод D1 служит только для индикации работы и, следовательно, может быть исключен.

Список компонентов:

  • R1 — 270R
  • R2, R3 — 68R
  • R4 — 2k2
  • C1, C2, C3 — 100n
  • D1 — LED 3мм
  • D2, D3 — ZD (3,6 вольт)
  • IO1 — Attiny45-20PU
  • J1 — USB B 90

Программное обеспечение:

Скомпилированный файл HEX доступен для скачивания в конце статьи, а так же и исходный код на языке C. Установка конфигурации ограничивается выбором использовании внутреннего множителя PLL осциллятора.

Так как приложение использует HID драйвера (Human Interface Device), которые имеются практически в каждой операционной системе, отпадает необходимость в установке дополнительных драйверов.

Чтобы получить графическое отображение измеренных данных, используется программное обеспечение доступное для загрузки в конце статьи. Программное обеспечение не требует настройки, и после запуска оно автоматически найдет подключенное устройство.

(скачено: 1 273)

http://pandatron.cz/?1138&dvoukanalovy_usb_hid_osciloskop