Человечество всегда пребывало в поисках новых источников энергии, способных решить множество проблем. Однако далеко не всегда они являются безопасными. Так, в частности, широко применяемые сегодня хотя и способны выработать просто колоссальное количество такой нужной всем электрической энергии, все же несут в себе смертельную опасность. Но, помимо в мирных целях, некоторые страны нашей планеты научились использовать ее и в военных, в особенности для создания ядерных боеголовок. В данной статье пойдет речь об основе такого разрушительного оружия, название которой - оружейный плутоний.

Краткая справка

В этой компактной форме металла содержится минимум 93,5 % изотопа 239Pu. Оружейный плутоний назвали так для того, чтобы его было можно отличить от «реакторного собрата». В принципе, плутоний всегда образовывается в абсолютно любом ядерном реакторе, который, в свою очередь, работает на низкообогащённом или природном уране, содержащем, по большей части, изотоп 238U.

Применение в военной отрасли

Оружейный плутоний 239Pu - основа ядерного вооружения. При этом применение изотопов с массовыми числами 240 и 242 неактуально, поскольку они создают очень высокий фон нейтронов, что в итоге затрудняет создание и конструирование высокоэффективных ядерных боекомплектов. Помимо этого, изотопы плутония 240Pu и 241Pu обладают значительно меньшим периодом полураспада по сравнению с 239Pu, поэтому детали из плутония сильно нагреваются. Именно в связи с этим в ядерный боеприпас инженеры вынуждены дополнительно добавлять элементы для отвода лишнего тепла. Кстати, 239Pu в чистом виде теплее тела человека. Нельзя также не учитывать и факт того, что продукты процесса распада тяжелых изотопов подвергают вредоносным изменениям кристаллическую решетку металла, а это вполне закономерно изменяет конфигурацию деталей из плутония, что, в конце концов, может вызвать полный отказ ядерного взрывного устройства.

По большому счету, все перечисленные трудности можно преодолеть. И на практике уже неоднократно проходили испытания на основе именно «реакторного» плутония. Но следует понимать, что в ядерных боеприпасах далеко не последнюю позицию занимает их компактность, малая собственная масса, долговечность и надежность. В связи с этим в них применяется исключительно оружейный плутоний.

Конструктивные особенности производственных реакторов

Практически весь плутоний в России был выработан в реакторах, оборудованных графитовым замедлителем. Каждый из реакторов возведен вокруг цилиндрически собранных блоков из графита.

В собранном виде графитовые блоки имеют между собой специальные щели для обеспечения беспрерывной циркуляции охладителя, в качестве которого используется азот. В собранной конструкции имеются и вертикально расположенные каналы, созданные для прохождения по ним водяного охлаждения и топлива. Сама по себе сборка жестко опирается на структуру с отверстиями под каналами, используемыми для отгрузки уже облученного топлива. При этом каждый из каналов находится в тонкостенной трубе, отлитой из легковесного и особопрочного алюминиевого сплава. Большая часть описываемых каналов имеет 70 топливных стержней. Вода для охлаждения протекает непосредственно вокруг стержней с топливом, отводя от них излишки тепла.

Повышение мощности производственных реакторов

Изначально первый реактор «Маяк» функционировал с мощностью 100 тепловых МВт. Однако главный руководитель советской программы по разработке ядерного оружия внес предложение, которое заключалось в том, чтобы реактор в зимнее время работал с мощностью 170-190 МВт, а в летний период времени - 140-150 МВт. Такой подход позволил реактору производить почти 140 граммов драгоценного плутония в сутки.

В 1952 году были проведены полноценные научно-исследовательские работы, с целью увеличения производственной мощности функционирующих реакторов такими методами:

  • Путем увеличения потока воды, используемой для охлаждения и протекающей через активные зоны ядерной установки.
  • Посредством наращивания сопротивления явлению коррозии, возникающей вблизи вкладыша каналов.
  • Уменьшением скорости окисления графита.
  • Наращиванием температуры внутри топливных элементов.

В итоге пропускная способность циркулирующей воды значительно возросла после того, как был увеличен зазор между топливом и стенками канала. От коррозии также удалось избавиться. Для этого выбрали наиболее подходящие алюминиевые сплавы и начали активно добавлять бихромат натрия, что, в конечном счете, повысило мягкость охлаждающей воды (рН стал равен порядка 6.0-6.2). Окисление графита перестало быть актуальной проблемой после того, как для его охлаждения стали применять азот (до этого использовался исключительно воздух).

На закате 1950-х нововведения были полностью реализованы на практике, что позволило уменьшить вызываемое радиацией крайне ненужное раздувание урана, значительно снизить тепловое упрочнение стержней из урана, улучшить сопротивление оболочки и повысить контроль качества производства.

Производство на «Маяке»

"Челябинск-65" - один из тех самых секретных заводов, на котором происходило создание оружейного плутония. На предприятии было несколько реакторов, с каждым из которых мы познакомимся поближе.

Реактор А

Установка была спроектирована и создана под руководством легендарного Н. А. Доллежаля. Работала она с мощностью 100 МВт. В реакторе имелось 1149 вертикально расположенных управляющих и топливных каналов в графитовом блоке. Полная масса конструкции составляла порядка 1050 тонн. Практически все каналы (кроме 25) загружались ураном, полная масса которого составляла 120-130 тонн. 17 каналов использовались для управляющих стержней, а 8 - для проведения экспериментов. Максимальный показатель проектного тепловыделения топливного элемента равнялось 3,45 кВт. На первых порах реактор производил около 100 грамм плутония в день. Впервые металлический плутоний был произведен 16 апреля 1949 года.

Технологические недостатки

Практически сразу были выявлены довольно серьёзные проблемы, которые заключались в коррозии алюминиевых вкладышей и покрытия топливных элементов. Также разбухали и повреждались урановые стержни и вытекала охлаждающая вода непосредственно в сердцевину реактора. После каждой протечки реактор приходилось останавливать на время до 10 часов с целью осушить графит воздухом. В январе 1949 года были заменены вкладыши в каналы. После этого запуск установки произошел 26 марта 1949 года.

Оружейный плутоний, производство которого на реакторе А сопровождалось всяческими трудностями, вырабатывался в период 1950-1954 годов при средней мощности агрегата 180 МВт. Последующая работа реактора начала сопровождаться более интенсивным его использованием, что вполне закономерно привело и к более частым остановкам (до 165 раз в месяц). В итоге, в октябре 1963 года реактор был остановлен и возобновил свою работу лишь весной 1964 года. Свою кампанию он полностью закончил в 1987 году и за весь период многолетнего функционирования произвел 4,6 тонны плутония.

Реакторы АВ

На предприятии "Челябинск-65" три реактора АВ было решено построить осенью 1948 года. Их производственная мощность составляла 200-250 грамм плутония в день. Главным конструктором проекта был А. Савин. Каждый реактор насчитывал 1996 каналов, 65 из них были контрольными. В установках была использована техническая новинка - каждый канал снабдили специальным детектором утечки охлаждающей жидкости. Такой ход позволил менять вкладыши без прекращения работы самого реактора.

Первый год функционирования реакторов показал, что они вырабатывали порядка 260 граммов плутония в сутки. Однако уже со второго года работы мощность постепенно наращивали, и уже в 1963 году ее показатель составил 600 МВт. После второго капитального ремонта была полностью решена проблема с вкладышами, а мощность уже составила 1200 МВт с ежегодным производством плутония 270 килограмм. Эти показатели сохранились до полного закрытия реакторов.

Реактор АИ-ИР

Челябинское предприятие использовало данную установку в период с 22 декабря 1951 года до 25 мая 1987 года. Помимо урана, реактор также производил кобальт-60 и полоний-210. Изначально на объекте производили тритий, но позже начали получать и плутоний.

Также завод по переработке оружейного плутония имел в строю реакторы, работающие на тяжелой воде и единственный легководный реактор (имя его - «Руслан»).

Сибирский гигант

"Томск-7" - именно такое название носил завод, на котором расположились пять реакторов для создания плутония. Каждый из агрегатов применял графит с целью замедлить нейтроны и обычную воду для обеспечения надлежащего охлаждения.

Реактор И-1 работал с системой охлаждения, в которой вода проходила единожды. Однако остальные четыре установки были снабжены замкнутыми первичными контурами, оборудованными теплообменниками. Такая конструкция позволяла дополнительно вырабатывать еще и пар, который в свою очередь помогал в производстве электричества и обогрева различных жилых помещений.

"Томск-7" имел также и реактор под названием ЭИ-2, который, в свою очередь, имел двойное назначение: производил плутоний и за счет вырабатываемого пара генерировал 100 МВт электроэнергии, а также 200 МВт тепловой энергии.

Важная информация

По заверениям ученых, полураспад оружейного плутония составляет порядка 24 360 лет. Огромная цифра! В связи с этим особо острым становится вопрос: «Как же правильно обойтись с отходами производства данного элемента?» Наиболее оптимальным вариантом считается постройка специальных предприятий для последующей переработки оружейного плутония. Объясняется это тем, что в таком случае элемент уже нельзя будет использовать в военных целях и будет подконтролен человеку. Именно так проводится утилизация оружейного плутония в России, однако Соединенные Штаты Америки пошли другим путем, нарушив тем самым свои международные обязательства.

Так, американское правительство предлагает уничтожать высокообогащенное не промышленным способом, а путем разбавления плутония и хранения его в специальных емкостях на глубине равной 500 метрам. Само собой, что в таком случае материал легко можно будет в любой момент извлечь из земли и вновь пустить его на военные цели. Как утверждает президент РФ Владимир Путин, изначально страны договаривались уничтожать плутоний не таким методом, а проводить утилизацию на промышленных объектах.

Отдельного внимания заслуживает стоимость оружейного плутония. По оценкам экспертов, десятки тонн этого элемента вполне могут стоить несколько миллиардов американских долларов. А некоторые специалисты ми вовсе оценили 500 тонн оружейного плутония аж в 8 триллионов долларов. Сумма реально впечатляющая. Чтобы было понятнее, насколько это большие деньги, скажем, что в последние десять лет 20 века среднегодовой показатель ВВП России составлял 400 миллиардов долларов. То есть, по сути, реальная цена оружейного плутония равнялась двадцати годовым ВВП Российской Федерации.

Плутоний (plutonium) Pu, - искусственно полученный радиоактивный химический элемент, Z=94, атомная масса 244,0642; относится к актинидам. В настоящее время известно 19 изотопов плутония. Самый лёгкий из них 228 Ри (71/2=1,1 с), самый тяжёлый ^Pu (7i/ 2 =2,27 дн), 8 ядерных изомеров. Наиболее устойчив изотоп 2А- 236, 238, 239, 240, 242 и 244: 21013, 6,29-ю 11 ,2,33-ю 10 ,8,51109, 3,7-ю 12 ,1,48-ю 8 и 6,66-юз Бк/г, соответственно. Средняя энергия a-излучения изотопов с А= 236, 238, 239, 240, 242 и 244 равна 5,8, 5,5, 5,1, 5,2, 4,9 и 4,6 МэВ, соответственно. Лёгкие изотопы плутония (2 з 2 Ри, 2 34Pu, 235Pu, 2 з7Ри) претерпевают электронный захват. 2 4"Ри - р-излу"чатель (Ер=0,0052 МэВ). Практически самый важный - 2 з9Ри (7|/ 2 =2,44-Ю4 лет, а-распад, самопроизвольное деление (з,мо- ю %)) делится под действием медленных нейтронов и используется в ядерных реакторах в качестве горючего, и в атомных бомбах, как вещество заряда.

Плутоний-236 (7i/ 2 =2.85i лет), а-излучатель: 5,72МэВ (30,56%) и 5,77 МэВ (69,26%), дочерний нуклид 2 3 2 U, удельная активность 540 Ки/г. Вероятность спонтанного деления кг 6 . Скорость самопроизвольного деления 5,8-ю 7 делений на 1 г/час соответствуют периоду" полураспада для этого процесса 3,5-109 лет.

Может быть получен по реакциям:

Этот изотоп образуется также при распаде а-излучателя 2 4оСш (7i/ 2 =27 дн) и р-излучателя 23 6m Np (7i/ 2 =22 ч). 2 з 6 Ри распадается по следующим направлениям: а-распад, вероятность 100% и самопроизвольное деление (вероятность

Плутопий-237 (7!/ 2 =45> 2 дн), дочерний продукт 2 37Np. Может быть получен бомбардировкой природного урана ионами гелия с энергией 40 МэВ по ядерным реакциям:

Он в небольших количествах образуется и при облучении урана реакторными нейтронами. Основной типа распада - электронный захват

(99%, характеристическое рентгеновское излучение, дочерний продукт ^Np), но имеет место а-распад с образованием 2 ззи и слабое у-излучение, период полураспада 45,2 дня. 2 з7Рц находит применение в системах контроля химического выхода плутония в процессе его выделения из образцов компонентов окружающей среды, а также для исследований метаболизма плутония в человеческом организме

Плутоний-238, 7*1/2=87,74 лет, а-излучатель (энергии 5,495(76%), 5,453(24%) и 5,351(0,15%) МэВ, слабый у-излучатель (энергии от 0,044 ДО 0,149 МэВ). Активность 1 г этого нуклида ~6зз,7 ГБк (удельная активность 17 Ки/г); каждую секунду в этом же количестве вещества происходит -1200 актов спонтанного деления. Скорость самопроизвольного деления 5,1-ю 6 делений на 1 г/час соответствуют периоду полураспада для этого процесса 3,8-10 ю лет. При этом развивается очень высокая тепловая мощность: 567 Вт/кг. Г Д ел=3,8-10 ю лет. Поперечное сечение захвата тепловых нейтронов а=500 барн, сечение деления под действием тепловых нейтронов -18 барн. Он обладает очень высокой удельной а-радиоактивностью (в 283 раза сильнее ^Ри), что делает его много более серьезным источником нейтронов от реакций (а, п).

  • 2 з 8Ри образуется в результате следующих распадов:
    • (3 -распад нуклида 2 3 8 Np:

2 з 8 Ри образуется в любом ядерном реакторе, работающем на природном или малообогащённом уране, содержащем в основном изотоп 2 з 8 и. При этом происходят следующие ядерные реакции:


Он также образуется при бомбардировке урана ионами гелия с энергией 40 МэВ:

гаснад ^”ги происходит но следующим направлениям: а-распад в 2 34U (вероятность юо%, энергия распада 5,593 МэВ):

энергия испускаемых а-частиц 5,450 мэь (в 2«,9«% случаев; и 5,499 мэь (.в 70,91% случаев). Вероятность спонтанного деления 1,9-ю -7 %.

При а-распаде 2 з 8 Ри выделяется 5,5 МэВ энергии. В источнике электричества, содержащем один килограмм 2 -з 8 Ри, развивается тепловая мощность ~5бо ватт. Максимальная мощность такого же по массе химического источника тока - 5 ватт. Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность 2 з»Ри делает этот изотоп незаменимым. Обычно а-распад сопровождается сильным у- излучением. 2 з 8 Ри - исключение. Энергия у-квантов, сопровождающих распад его ядер, невелика. Мала и вероятность самопроизвольного деления ядер этого изотопа. 288 Ри применяется для изготовления атомных электрических батарей и нейтронных источников, в качестве источников питания для электрокардиостимуляторов, получения тепловой энергии в космических аппаратах, в составе радиоизотопных дымовых детекторов и т.п.

Плутоний-239, 71/2=2.44-ю 4 лет, а-распад юо%, полная энергия распада 5,867 МэВ, испускает а-частицы с энергиями 5,15 (69%), 5,453 (24%) и 5,351(0,15%) и слабое у-излучение, поперечное сечение захвата тепловых нейтронов ст=271-барн. Удельная активность 2,33109 Бк/г. Скорость самопроизвольного деления 36 дел/г/час соответствуют 7”дел= 5,5-10*5 лет. 1 кг 2 39Ри эквивалентен 2,2-107 киловатт-час тепловой энергии. Взрыв 1 кг плутония равен взрыву 20000 тонн тротила. Единственный изотоп плутония, используемый в атомном оружии. 2 39Ри входит в состав семейства 2П+3- Продуктом его распада является 2 35U. Этот изотоп делится под действием тепловых нейтронов и используется в ядерных реакторах в качестве гошочего. 2 39Ри получается в ялепных пеактопах по пеакпии:

Поперечное сечение реакции -455 барн. *39Ри образуется также при

бомбардировке урана дейтронами с энергией выше 8 МэВ по ядерным реакциям:

а также при бомбардировке урана ионами гелия с энергией 40 МэВ
самопроизвольное деление, вероятность 1,36-10*7%.

Отделение плутония от урана, проводимое химическими методами, представляет относительно более простую задачу, чем разделение изотопов урана. Вследствие этого стоимость плутония в разы ниже стоимости 2 ззи. Когда ядро 2 39Ри делится нейтронами на два осколка примерно равной массы, выделяется около 200 МэВ энергии. Способен поддерживать цепную реакцию деления. Относительно короткий период полураспада 2 39Ри (по сравнению с ^и) подразумевает значительное выделение энергии при радиоактивном распаде. 2 39Рц производит 1,92 Вт/кг. Хорошо теплоизолированный блок плутония разогревается до температуры свыше 100° за два часа и вскоре до точки a-p-перехода, что представляет проблему для конструирования оружия из-за изменения объёма при фазовых переходах плутония. Удельная активность 2 39Pu 2,28-ю 12 Бк/г. 2 39Ри легко делится тепловыми нейтронами. Делящийся изотоп 239 Pu при полном распаде даёт тепловую энергию, эквивалентную 25000000 квт-час/кг. У 2 39Ри поперечное сечение деления на медленных нейтронах 748 барн, сечение радиационного захвата 315 барн. 2 39Pu имеет большие сечения рассеивания и поглощения, чем уран и большее число нейтронов при делении (3,03 нейтрона на один акт деления по сравнению с 2,47 у 2 ззи), и, соответственно, меньшую критическую массу. Чистый 2 39Pu имеет среднюю величину испускания нейтронов от спонтанного деления -30 нейтронов/с-кг (-10 делений/с).-

Плутоний-240, 71/2=6564 л, а-распад, удельная активность 8,51-109 Бк/г. Скорость самопроизвольного деления 1,6-ю 6 дел/г/час, Ti/2=i,2-io u л. 24°Ри имеет втрое меньшее эффективное сечение захвата нейтрона, чем 239 Ри и в большинстве случаев превращается в 2 4*Pu.

24ор и образуется при распаде некоторых радионуклидов:


Энергия распада 5,255 МэВ, а-частицы с энергиями 5,168 (72,8%), 5,123 (27,10%) МэВ;

Спонтанное деление, вероятность 5,7-ю -6 .

В урановом топливе содержание ^Ри увеличивается в процессе работы реактора. В отработанном топливе ядерного реактора -70% *з9Ри и 26% 2 4°Ри, что затрудняет изготовление атомного оружия, поэтому оружейный плутоний получается на специально предназначенных для этого реакторах путём переработки урана после нескольких десятков дней облучения. *4°Ри - основной изотоп, загрязняющий оружейный 2 39Ри. Уровень его содержания важен из-за интенсивности спонтанного деления - 415000 дел/с-кг, испускается юооооо нейтронов/с-кг, так как каждое деление рождает 2,26 нейтрона - в 30000 раз больше, чем у равной массы 2 39Ри. Наличие всего 1% этого изотопа производит так много нейтронов, что пушечная схема заряда утке неработоспособна - начнётся раннее инициирование взрыва и заряд будет распылён до того, как взорвётся основная масса взрывчатки. Пушечная схема возможна только при юо% содержании *39Ри, добиться чего практически не реально. Поэтому плутониевые бомбу собирают по имплозивной схеме, которая допускает использование плутония довольно сильно загрязнённого изотопом ^Ри. В оружейном плутонии содержание 2 4°Ри

Вследствие более высокой удельной активности (1/4 от 2 39Ри), тепловой выход выше, 7.1 Вт/кг, что обостряет проблему перегрева. Удельная активность ^Ри 8,4109 Бк/г. Содержание ^Ри в оружейном плутонии (0,7%), в реакторном (>19%). В топливе для тепловых реакторов присутствие 24 °Ри нежелательно, но этот изотоп служит топливом в быстрых реакторах.

Плутоний-241, Г,/2=14 л, дочерний продукт 241 Am, р- (99%, ?рмакс=0,014 МэВ), а (1%, две линии: 4,893 (75%) и 4,848 (25%) МэВ) и у-излучатель, удельная активность ^Ри 3,92-ю 12 Ки/г. Получается при сильном облучении плутония нейтронами, а также в циклотроне по реакции 2 3 8 U(a,n) 241 Pu. Этот изотоп делится нейтронами любых энергий (поперечное сечение поглощения нейтронов у ^‘Ри на 1/3 больше, чем у ^Фи, сечение деления тепловыми нейтронами около юоо барн, вероятность деления при поглощении нейтрона 73%), имеет низкий нейтронный фон и умеренную тепловую мощность и потому непосредственно не влияет на удобство применения плутония. Он распадается в 241 Am, который очень плохо делится и создаёт много тепла: ю 6 Вт/кг. ^‘Ри обладает большим сечением деления на реакторных нейтронах (поо барн), что позволяет использовать его в качестве топлива. Если оружие первоначально содержит 241 Ри, то через несколько лет его реакционная способность падает, и это следует учитывать для предотвращения уменьшения мощности заряда и увеличения самонагрева. Сам 24 ‘Ри сильно не нагревается (всего 3.4 Вт/кг) несмотря на свой очень короткий период полураспада из-за очень слабого P-излучения. При поглощении нейтрона ядром 24 *Ри, если оно не делится, то переходит в 242 Pu. 241 Ри является основным источником получения ^‘Аш.

Плутоний-242 (^/2=373300 лет),

Плутоний-243 №/2=4-956 час), р"- (энергия 0,56 МэВ) и у-излучатель (несколько линий в интервале 0,09-е-о,16 МэВ) Поперечное сечение реакции 242 Pu(n,y) 243 Pu на медленных нейтронах юо барн. Образуется при p-распаде "^зРи 24 зАш, может быть получен облучением нейтронами 2 4 2 Pu. Из-за своего короткого периода полураспада, присутствует в облучённом реакторном топливе в незначительных количествах.

Плутоний-244 (Ti/ 2 =8,o*io 7 лет), а-излучатель, Е а = 4,6 МэВ, способен к самопроизвольному делению, удельная активность 6,66-105 Бк/г, поперечное сечение захвата тепловых нейтронов 0=19 барн. Это не только самый долгоживущий изотоп плутония, но и самый долгоживущий из всех изотопов трансурановых элементов. Удельная активность 2

Ещё более тяжёлые изотопы плутония подвержены p-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. В термоядерных взрывах образуются все изотопы плутония, вплоть до 2 57Ри. Но их время жизни - десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.

Плутоний - очень тяжёлый серебристо-белый металл, блестящий подобно никелю, когда только что очищен. Атомная масса 244,0642 а.е.м. (г/моль), радиус атома 151 пм, энергия ионизации (первый электрон) 491,9(5,10) кДж/моль (эВ), электронная конфигурация 5f 6 7s 2 . Радиус иона: (+4е) 93, (+3е) ю8 пм, электроотрицательность (по Полингу) 1,28, Т П л=639,5°, Г К ип=3235° ,плотность плутония 19,84 (a-фаза), теплота испарения плутония 80,46 ккал/моль. Давление пара плутония значительно выше давления пара урана (при 1540 0 в 300 раз). Плутоний может быть отогнан от расплавленного урана. Известны шесть аллотропных модификаций металлического плутония. При температурах

В лабораторных условиях металлический плутоний может быть получен по реакциям восстановления галогенидов плутония литием, кальцием, барием или магнием при 1200°:

Металлический плутоний получают также при восстановлении в паровой фазе при 1300 0 трифторида плутония посредством силицида кальция по реакции

или термическим разложением галогенидов плутония в вакууме.

Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью из всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности.

Плутоний обладает шестью различными фазами (кристаллическими структурами) в твердой форме (табл. 3), больше чем любой другой элемент. Некоторые переходы между фазами сопровождаются разительными изменениями объёма. В двух из этих фаз - дельта и дельта прим - плутоний обладает уникальным свойством сжиматься при повышении температуры, а в остальных - имеет чрезвычайно большой температурный коэффициент расширения. При расплавлении плутоний сжимается, позволяя нерасплавленному плутонию плавать. В своей максимально плотной форме, a-фазе, плутоний шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). В a-фазе чистый плутоний хрупок. Известно большое число сплавов и интерметаллических соединений плутония с Al, Be, Со, Fe, Mg, Ni, Ag. Соединение PuBe, 3 является источником нейтронов с интенсивностью 6,7*107 нейтр/скг.

Рис. 5.

Вследствие своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термоизолированной оболочке разогревается до температуры, превышающей температуру кипения воды. Мел- коизмельчённый плутоний - пироморфен, при 300 0 самовозгорается. Взаимодействует с галогенами и галогеноводородами, образуя галогениды, с водородом - гидриды, с утлеродом - карбид, с азотом реагирует при 250 0 с образованием нитрида, при действии аммиака также образует нитриды. Восстанавливает С0 2 до СО или С, при этом образуется карбид. Взаимодействует с газообразными соединениями серы. Плутоний легко растворяется в соляной, 85%-ной фосфорной, йодистоводородной, хлорной и концентрированной хлоруксусной кислотах. Разбавленная H2SO4 растворяет плутоний медленно, а концентрированная H 2 S0 4 и HN0 3 его пассивируют и не реагируют с ним. Щелочи на металлический плутоний не действуют. Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимый гидроксид плутония. Концентрированные растворы плутония нестабильны, вследствие радиолитического разложения, ведущего к выпадению осадка.

Табл. 3. Плотности и температурный диапазон фаз плутония:

Основная валентность плутония 4+. Это электроотрицательный, химически активный элемент (на 0,2 В), гораздо в большей степени, чем уран. Он быстро тускнеет, образую радужную плёнку, вначале светло- жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно быстрое, на его поверхности появляется оливково-зеленый порошок оксида (Ри0 2).

Плутоний легко окисляется и быстро коррозирует даже в присутствии незначительной влажности. Он покрывается ржавчиной в атмосфере инертного газа с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. При нагревании плутония в присутствии водорода, углерода, азота, кислорода, фосфора, мышьяка, фтора, кремния, теллура образует с этими элементами твердые нерастворимые соединения.

Из оксидов плутония известны Pu 2 0 3 и Ри0 2 .

Диоксид плутония Ри0 2 - оливково-зелёный порошок, чёрные блестящие кристаллы или шарики от красно-коричневого до янтарножёлтого цвета. Кристаллическая структура типа флюорита (Ри-* + формируют гранецентрированную кубическую сингонию, а О 2- -тетраэдр). Плотность 11,46, Гпл=2400°. Он образуется почти из всех солей (например, оксалата, пероксида) плутония при нагревании на воздухе или в атмосфере 0 2 , при температурах 700-1000 0 , независимо от того, в какой степени окисления находится в этих солях плутоний. Например, его можно получить кальцинацией гексагидрата оксалата Pu(IV) Pu(C 2 0 4) 2 -6H 2 0 (образуется при переработке ОЯТ):

Ри0 2 , полуденный при низких температурах, легко растворяется в концентрированной соляной и азотной кислотах. Напротив, прокаленный Ри0 2 трудно растворим и может быть переведён в раствор только в результате специальной обработки. Он нерастворим в воде и органических растворителях. Медленно взаимодействует с горячей смесью концентрированной HN0 3 с HF. Это устойчивое соединение используется в качестве весовой формы при определении плутония. Его используют также для приготовления топлива в ядерной энергетике.

Особенно реакционноспособный Ри0 2 , но содержащий небольшие количества оксалата, получают разложением Ри(С 2 0 4) 2 -6Н 2 0 при 130-^-300°.

Гидрид Р11Н3 получают из элементов при 150-5-200°.

Плутоний образует галогениды и оксигалогениды, дисилицид PuSi 2 и полуторный сульфид PuSi,33^ b5 , которые представляют интерес ввиду их туго плавкости, а также карбиды различных стехиометрий: от РиС до Ри 2 С 3 . РиС - кристаллы чёрного цвета, Г 11Л =1664 0 . Совместно с UC может использоваться как топливо атомных реакторов.

Нитрид плутония, PuN - кристаллы серого (до чёрного) цвета гранецентрирированной кубической решеткой типа NaCl (0=0,4905 нм, z=4, пространственная группа Ртзт; параметр решётки увеличивается со временем под действием собственного a-излучения); Т пл.=2589° (с разложением); плотность 14350 кг/мз. Обладает высокой теплопроводностью. При высокой температуре (~1боо°) летуч (с разложением). Получается при взаимодействии плутония с азотом при 6оо° или со смесью водорода с аммиаком (давление 4 кПа). Порошкообразный PuN плутония окисляется на воздухе при комнатной температуре, полностью превращаясь в Ри0 2 через 3 сут, плотный - окисляется медленно (0,3% за 30 сут). Он медленно гидролизуется холодной водой и быстро - при нагревании, образуя Ри0 2 ; легко растворяется в разбавленных соляной и серной кислотах с образованием соответствующих солей Pu(III); по силе действия на нитрид плутония кислоты могут быть расположены в ряд HN0 3 >HC1>H 3 P0 4 >>H 2 S04>HF. Может использоваться как реакторное топливо.

Существует несколько фторидов плутония: PuF 3 , PuF 4 , PuF6.

Тетрафторид плутония PuF 4 - вещество розового цвета или коричневые кристаллы, моноклинной сингонии. Изоморфен с тетрафторидом Zr, Hf, Th, U, Np и Се. Г пл =1037 0 , Г к,«1=1277°. Он плохо растворим в воде и органических растворителях, но легко растворяется в водных растворах в присутствии солей Ce(IV), Fe(III), А1(Ш) или ионов, образующих с ионами фтора устойчивые комплексы. Розовый осадок PuF 4 -2,5H 2 0 получают осаждением плавиковой кислотой из водных растворов солей Pu(III). Это соединения дегидратируется при нагревании до 350 м в токе HF.

PuF 4 образуется при действии фтористого водорода на диоксид плу- тония в присутствии кислорода при 550° по реакции:

PuF 4 можно также полупить обработкой PuF 3 фтором при 300 0 или нагревом солей Pu(III) или Pu(IV) и токе фтористого водорода. Из водных растворов Pu(IV) PuF 4 осаждается плавиковой кислотой в виде розового осадка состава 2PuF 4 H 2 0. PuF 4 практически полностью соосаждается с LaF 3 . При нагревании на воздухе до 400 0 PuF 4 превращается в Ри0 2 .

Гексафторид плутония, PuFe - летучие кристаллы при комнатной температуре желтовато-коричневого цвета (при низких температурах - бесцветные) ромбической структуры, Гпл=52°, Т кнп =б2° при атмосферном давлении, плотность 5060 кгм-з, теплота сублимации 12,1 ккал/моль, теплота испарения =7.4 ккал моль* 1 , теплота плавления =4,71 ккал/моль, весьма склонно к коррозии и чувствительно к авторадиолизу. PuFe - легкоки- пящая жидкость, термически значительно менее стабильная и менее летучая, чем UF6. Пары PuFe окрашены подобно N0 2 , жидкость имеет тёмнокоричневый цвет. Сильный фторирующий агент и окислитель; бурно реагирует с водой. Крайне чувствителен к влаге; с Н 2 0 при дневном свете может реагировать очень энергично со вспышкой с образованием Ри0 2 и PuF 4 . PuFe,сконденсированный при -195 0 на лёд, при нагревании медленно гидролизуется до Pu0 2 Fo. Компактный PuFe самопроизвольно разлагается вследствие а-излу"чения плутония.

UF6 получают обработкой PuF 4 или Ри0 2 фтором при 6004-700°.

Фторирование PuF 4 фтором при 7004-800° происходит очень быстро и является экзотермической реакцией. Образующийся PuF6 во избежание разложения быстро удаляют из горячей зоны - вымораживают или проводят синтез в потоке фтора, который достаточно быстро выводит продукт из реакционного объёма.

PuFa можно также получить по пеякпиям:

Существуют нитраты Pu(III), Pu(IV) и Pu(VII): Pu(N0 3) 3 , Pu(N0 3) 4 и Pu0 2 (N0 3) 2 , соответственно.

Нитрат плутония, Pu(N0 3) 4 *5H 2 0, получают медленным (в течение нескольких месяцев) испарением концентрированного азотнокислого раствора Pu(IV) при комнатной температуре. Хорошо растворим в HN0 3 и воде (азотнокислый раствор тёмно-зелёного цвета, коричневого цвета). Растворяется ацетоне, эфире и трибутилфосфате. Растворы нитрата плутония и нитратов щёлочных металлов в концентрированной азотной кислоте при упаривании выделяют двойные нитраты Ме 2 [Ри(Ы0 3)б], где Me + =Cs + , Rb + , К + , Th + , C 9 H 7 NH + , C 5 H 5 NH + , NH 4 + .

Оксалат плутония (IV), Pu(C 2 0 4) 2 -6H 2 0, - порошок песочного (иногда жёлто-зелёного) цвета. Изоморфен с U(C 2 0 4)-6H 2 0. Гексагидрат оксалата плутония плохо растворим в минеральных кислотах и хорошо в растворах оксалатов и карбонатах аммония или щёлочных металлов с образованием комплексных соединений. Осаждается щавелевой кислотой из азотнокислых (i,5*4.5M HNO.0 растворов Pu(IV):

Обезвоживается при нагревании на воздухе до ио°, выше 400 0 разлагается:

В соединениях плутоний проявляет степени окисления от +2 до +7. В водных растворах образует ионы, отвечающие степеням окисления от +3 до +7. При этом ионы всех степеней окисления, кроме Pu(VII), могут находиться в растворе одновременно в равновесии. Ионы плутония в растворе подвергаются гидролизу и легко образуют комплексные соединения. Способность образовывать комплексные соединения увеличивается в ряду Pu5 +

В растворе наиболее стабильны ионы Pu(IV). Pu(V) диспропорцио- нируют на Pu(lV) и Pu(Vl). Валентное состояние Pu(VI) характерно для сильно окисляющих водных растворов, и ему отвечает ион плутонила Ри0 2 2+ . Ионы плутония, с зарядами з + и 4 + существуют в водных растворах в отсутствие гидролиза и комплексообразования в виде сильно гидратированных катионов. Pu(V) и Pu(VI) в кислых растворах представляют собой кислородсодержащие катионы типа М0 2 + и М0 2 2+ .

Степеням окисления плутония (III, IV, V и VI) соответствуют следующие ионные состояния в кислых растворах: Pu 3+ , Pu4 + , Ри0 2 2+ и Ри0 5 3 Ввиду" близости потенциалов окисления ионов плутония друг к другу" в растворах могут одновременно существовать в равновесии ионы плутония с разными степенями окисления. Кроме того, наблюдается диспропорционирование Pu(IV) и Pu(V):


Скорость диспропорционирования растёт с увеличением концентрации плутония и температуры.

Растворы Риз + имеют сине-фиолетовую окраску. По своим свойствам Рцз + близок к РЗЭ. Нерастворимы его гидроксид, фторид, фосфат и оксалат. Pu(IV) является наиболее устойчивым состоянием плутония в водных растворах. Pu(IV) склонен к комплексообразованию с азотной, серной, соляной, уксусной и др. кислотами. Так, в концентрированной азотной кислоте Pu(IV) образует комплексы Pu(N0 3)5- и Ри(Ж) 3)б 2 ". В водных растворах Pu(IV) легко гидролизуется. Гидроксид плутония (зелёного цвета) склонен к полимеризации. Нерастворимы фторид, гидроксид, оксалат, йодат Pu(IV). Pu(IV) хорошо соосаждается с нерастворимыми гидроксидами, фторидом лантана, йодатами Zr, Th, Се, фосфатами Zr и Bi, оксалатами Th, U(IV), Bi, La. Pu(IV) образуют двойные фториды и сульфаты с Na, К, Rb, Cs и NH 4 + . Pu(получают в о,2 М растворе HN0 3 при смешении растворов Pu(III) и Pu(VI). Из солей Pu(VI) интерес представляют натрийплутонил- ацет NaPu0 2 (C 2 H 3 0 2) 3 и аммонийплутонилацетат NH 4 Pu0 2 (C 2 H 3 0 2), которые сходны по структуре с соответствующими соединениями U, Np и Ат.

Формальные окислительные потенциалы плутония (в В) в lM растворе НС10 4:


Устойчивость комплекса, образующегося с данным анионом, для ионов актинидов падает в следующем порядке: М4 + >М0 2+ >Мз + >М0 2 2+ > М0 2 + , т.е. в порядке уменьшения ионного потенциала. Способность анионов к комплексообразованию с ионами актинидов убывает для однозарядных анионов - фторид >нитрат> хлорид> перхлорат; для двухзарядных анионов карбонат>оксалат>сульфат. Большое число комплексных ионов образуется с органическими веществами.

Как Pu(IV), так и Pu(VI) хорошо экстрагируются из кислых растворов этиловым эфиром, ТБФ, диизопропилкетоном и др. Неполярными органическими растворителями хорошо экстрагируются клешневидные комплексы, например, с а-теноилтрифтор-ацетоном, р-дикетоном, купферо- ном. Экстракция комплексов Pu(IV) с а-теноилтрифторацетон (ТТА) позволяет провести очистку плутония от большинства примесей, включая актинидные и редкоземельные элементы.

Водные растворы ионов плутония в разных состояниях имеют следующие цвета: Pu(III), как Рцз + (голубой или бледно-лиловый); Pu(IV), как Рц4* (жёлто-коричневый); Pu(VI), как Ри0 2 2+ (розово-оранжевый). Pu(V), как Ри0 2 + первоначально розовый, но будучи нестабильным в растворе, этот ион диспропорционирует в Ри 4+ и Pu0 2 2+ ; Ри 4+ затем окисляется, переходя из Ри0 2 + в Pu0 2 2+ , и восстанавливается в Ри 3+ . Таким образом, водный раствор плутония со временем представляет собой смесь Рцз + и Ри0 2 2+ . Pu(VII), как Ри0 5 2 - (тёмно-синий).

Для обнаружения плутония используют радиометрический метод, основанный на измерении a-излучения плутония и его энергии. Этот метод характеризуется довольно высокой чувствительностью: позволяет обнаружить 0,0001 мкг 2 39Ри. При наличии в анализируемом образце других а-излучателей идентификация плутония может быть выполнена измерением энергии а-частиц при помощи а-спектрометров.

В ряде химических и физико-химических методов качественного определения плутония используется различие в свойствах валентных форм плутония. Ион Pu(III) в довольно концентрированных водных растворах можно обнаружить по ярко-голубой окраске, резко отличающейся от желто-коричневой окраски водных растворов, содержащих ионы Pu(IV).

Спектры светопоглощения растворов солей плутония в различных степенях окисления имеют специфические и узкие полосы поглощения, что позволяет проводить идентификацию валентных форм и обнаружение одной из них в присутствии других. Наиболее характерные максимумы светопоглощения Pu(III) лежат в области 600 и 900 ммк, Pu(IV) - 480 и 66о ммк, Pu(V) - 569 ммк и Pu(VI) 830+835 ммк.

Хотя плутоний химически токсичен, как и любой тяжёлый металл, этот эффект выражается слабо по сравнению с его радиотоксичностыо. Токсические свойства плутония появляются как следствие а- радиоактивности.

Для 2 з 8 Ри, 2 39Ри, 24op U) 242p u> 244Pu группа радиационной опасности А, МЗА=з,7-юз Бк; для 2 4>Ри и 2 43Pu группа радиационной опасности Б, МЗА = 3,7-104 Бк. Если радиологическую токсичность 2 з«и принять за единицу, этот же показатель для плутония и некоторых других элементов образует ряд: 235U 1,6 - 2 39Pu 5,0 - 2 4 1 Аш 3,2 - 9«Sr 4,8 - ^Ra 3,0. Можно видеть, что плутоний не самый опасный среди радионуклидов.

Коротко остановимся на промышленном производстве плутония.

Изотопы плутония нарабатывают на мощных урановых реакторах на медленных нейтронах по реакции (п, у) и в реакторах-размножителях на быстрых нейтронах. Изотопы плутония также образуются в энергетических реакторах. К концу 20-го века в мире было произведено в общей сложности -1300 тонн плутония, из которого ~300 т для оружейного использования, остальное - побочный продукт АЭС (реакторный плутоний).

Оружейный плутоний отличает от реакторного не столько степень обогащения и химический состав, сколько изотопный состав, сложным образом зависящий как от времени облучения урана нейтронами, так и от времени хранения после облучения. Особенно важно содержание изотопов 24°Ри и 2 4‘Ри. Хотя атомную бомбу можно создать при любом содержании этих изотопов в плутонии, тем не менее, наличие 2 4«p u в 239р и определяет качество оружия, т.к. от него зависит нейтронный фон и такие явления, как рост критической массы и тепловой выход. Нейтронный фон влияет на взрывное устройство ограничением общей массы плутония и необходимостью достижения высоких скоростей имплозии. Поэтому бомбы старых схем требовали низкого содержания 2 4ор и. Но в проектах «высокого» дизайна используется плутоний любой чистоты. Поэтому термин «оружейный плутоний» военного значения не имеет; это - экономический параметр: «высокий» дизайн бомбы существенно дороже «низкого».

С ростом доли 24op U) стоимость плутония падает, а критическая масса увеличивается. Содержание 7% 24°Ри делает общую стоимость плутония минимальной. Средний состав оружейного плутония: 93,4% 239 Ри, 6,о%

24°Pu и 0.6% 241 Pu. Тепловая мощность такого плутония 2,2 Вт/кг, уровень спонтанного деления 27100 делений/с. Этот уровень позволяет использовать в оружии 4 кг плутония с очень низкой вероятностью предетонации в хорошей имплозионной системе. Через 20 лет большая часть 24, Ри превратится в ^’Ат, существенно увеличив тепловыделение - до 2.8 Вт/кг. Поскольку 241 Ри прекрасно делится, а 241 Ат - нет, это приведет к снижению запаса реактивности плутония. Нейтронное излучение 5 кг оружейного плутония 300000 нейтронов/с создаёт уровень излучения 0.003 рад/час на расстоянии 1 м. Фон снижается отражателем и взрывчатым веществом, окружающим его, в ю раз. Тем не менее, длительный контакт обслуживающего персонала с ядерным взрывным устройством во время его обслуживания может привести к дозе радиации, равной предельной годовой.

Из-за малой разницы в массах 2 -"* 9 Ри и 24 °Ри эти изотопы не разделяются промышленными способами обогащения. Хотя их можно разделить на электромагнитном сепараторе. Проще, однако, более чистый 2 зэРи получить путём сокращения времени пребывания в реакторе *з*и. Нет причин для снижения содержания 24 °Ри менее 6%, т. к. эта концентрация не мешает создавать эффективные триггеры термоядерных зарядов.

Помимо оружейного существует и реакторный плутоний. Плутоний из ОЯТ состоит из множества изотопов. Состав зависит от типа реактора и рабочего режима. Типичные значения для реактора на лёгкой воде: 2 з 8 Ри - 2%, 239Ри - 61%, 24 °Pll - 24%, 24iPu - 10%, 242 Pll - 3%. Из такого плутония бомбу изготовить трудно (для террористов - практически невозможно), но в странах с развитой технологией реакторный плутоний вполне можно пустить на производство ядерных зарядов.

Табл. 4. Характеристика типов плутония.

Изотопный состав плутония, накапливающегося в реакторе, зависит от степени выгорания топлива. Из пяти основных образовавшихся изотопов два с нечётными Z - 2 39Ри и 24, Ри являются расщепляющимися, т.е. способными к делению под действием тепловых нейтронов, и могут быть использованы в качестве реакторного топлива. В случае использования плутония в качестве реакторного топлива, значение имеет количество накопленного 2 39Ри и 241 Ри. Если извлеченный из отработавшего топлива плутоний повторно использовать в реакторах на быстрых нейтронах, его изотопный состав постепенно становится менее пригодным для ору г жейного использования. После нескольких топливных циклов, накопление 2 з 8 Ри, #2 4«Ри и ^ 2 Pu делает его неподходящим для этой цели. Подмешивание такого материала - удобный метод «денатурировать» плутоний, гарантируя нераспространение делящихся материалов.

Как оружейный, так и реакторный плутоний содержат некоторое количество ^Ри. ^’Ри распадается на 24 ’Am путём излучения р-частицы. Поскольку" дочерний 241 Ат обладает значительно большим периодом полураспада (432 л), чем материнский 241 Ри (14,4 л), его количество в заряде (или в отходах ЯТЦ) возрастает по мере распада ^’Ри. у-Радиация, образующаяся в результате распада 241 Am, значительно сильнее, чем у 241 Ри, следовательно, со временем она также нарастает. Концентрация ®4фи и период его хранения прямо коррелируют с уровнем у-радиации, образующейся в результате увеличения содержания 24 ‘Аш. Плутоний долго хранить нельзя - после его наработки, его надо использовать, иначе его придётся снова повергнуть трудоёмкому и дорогому рециклингу.

Табл. 5. Некоторые характеристики оружейного и реакторного плутония

Наиболее важный в практическом отношении изотоп 2 39Pu получают в ядерных реакторах при длительном облучении нейтронами природного или обогащённого урана:

К сожалению, идут и другие ядерные реакции, приводящие к возникновению других изотопов плутония: 2 - з8 Ри, а4ор и, 24 Фи и 242 Ри, отделение которых от 2 з9Рц, хоть и разрешимая, но весьма сложная задача:

При облучении урана реакторными нейтронами в нём образуются как лёгкие, так и тяжёлые изотопы плутония. Сначала рассмотрим образование изотопов плутония с массой менее 239.

Небольшая часть нейтронов, испускаемых в процессе деления, обладает энергией, достаточной для возбуждения реакции 2 3 8 U(n,2n) 2 3?u. 237 U - р-излучатель и с Т’,/ 2 =6,8 дн превращается в долгоживущий 2 37Np. Этот изотоп в графитовом реакторе на природном уране образуется в количестве 0,1% от общего количества одновременно образующегося 2 39Ри. Захват медленных нейтронов 2 3?Np приводит к образованию 2 3 8 Np. Поперечное сечение этой реакции 170 барн. Цепочка реакций имеет вид:

Поскольку" здесь участвуют два нейтрона, выход пропорционален квадрату дозы облучения и отношение количеств 2з8 Ри к 2 39Ри пропорционально отношению 2 39Ри к 238 U. Пропорциональность соблюдается не совсем точно из-за отставания в образовании 23 ?Np, связанного с 6,8 суточным периодом полураспада ^U. Менее важным источником образования 2 з 8 Ри в 2 39Ри является распад 242 Ст, образующегося в урановых реакторах. 2з 8 Ри образуется также по реакциям:

Поскольку это нейтронная реакция третьего порядка, отношение количества 2 з 8 Ри, образовавшегося таким путём, к 2 39Ри пропорционально квадрату отношения *з9Ри к 2 3 8 U. Однако эта цепочка реакций становится относительно более существенной при работе с ураном, обогащённым ^и.

Концентрация 2 з 8 Ри в образце, содержащем 5,6% 24 °Ри, составляет 0,0115%. Эта величина вносит довольно значительный вклад в суммарную a-активность препаратов, поскольку у ^Pu Ti/2= 86,4 л.

Наличие 2 з 6 Ри в плутонии, получаемом в реакторе, связано с рядом реакций:

Выход 2 з 6 Ри в процессе облучения урана составляет ~ю-9-ио" 8 %.

С точки зрения накопления в уране плутония основные превращения связаны с образованием изотопа 2 39Pu. Но важны и другие побочные реакции, поскольку ими определяется выход и чистота целевого продукта. Относительное содержание тяжёлых изотопов 240 Ри, ^Фи, 242 Ри, а также 2з«Ри, 2 37Np и ^"Аш зависит от дозы нейтронного облучения урана (времени пребывания урана в реакторе). Сечения захвата нейтронов изотопами плутония достаточно велики, чтобы вызвать последовательные реакции (п, у) даже при малых концентрациях 2 39Ри в уране.

Табл. 6. Изотопный состав плутония, выделенного из облучённого нейтронами природного урана. _

Образовавшийся при облучении урана нейтронами 241 Ри переходит в 241 Аш, который сбрасывается в процессе химико-технологической переработки урановых блоков (241 Ат, однако, постепенно снова накапливается в очищенном плутонии). Так, например, a-активность металлического плу"- тония, содержащего 7,5% 24 °Ри, через год увеличивается на 2% (за счёт образования 24, Ат). 24, Ри обладает большим сечением деления на нейтронах реактора, составляющим - поо барн, что важно при использовании плутония в качестве реакторного горючего.

Если уран или плутоний подвергнуть сильному нейтронному облучению, то начинается синтез минорных актинидов:


Образовавшийся из 2 4*Pu 2 4*Am в свою очередь вступает в реакции с нейтронами, образуя 2 з 8 Ри и 2 4 2 Ри:

Этот процесс открывает возможность получения препаратов плутония с относительно низким у-излучением.

Рис. 6. Изменение соотношения изотопов плутония в процессе длительного облучения 2 з9Ри потоком нейтронов 3*10*4 н/см 2 с.

Таким образом, долгоживущие изотопы плутония - ^Ри и 2 44Ри образуются при длительном (около ста дней и более) облучении нейтронами 2 39Ри. При этом выход 2 4 2 Ри достигает нескольких десятков процентов, в то время как количество образовавшегося 2 44Ри составляет доли процента от ^Ри. Одновременно получаются Am, Cm и другие трансплутониевые, а также осколочные элементы.

При производстве плутония, уран (в виде металла) облучают в промышленном реакторе (тепловом или быстром), преимущества которого заключаются в высокой плотности нейтронов, невысокой температуре, в возможности облучения в течение времени намного меньшего, чем кампания реактора.

Основная проблема, возникшая при наработке в реакторе оружейного плутония, заключается в выборе оптимального времени облучения урана. Дело в том, что составляющий основную часть естественного урана изотоп 2 з 8 и захватывает нейтроны, образуя 23 9Ри, тогда как 2 ззи поддерживает цепную реакцию деления. Поскольку для образования тяжёлых изотопов плутония необходим дополнительный захват нейтронов, то количество таких изотопов в уране растёт медленнее, чем количество 2 39Ри. Уран, облучённый в реакторе короткое время, содержит небольшое количество 2 39Ри, зато - более чистого, чем при длительных выдержках, так как вредные тяжёлые изотопы не успели накопиться. Однако, 2 39Рц сам подвержен делению и при увеличении его концентрации в реакторе, скорость его трансмутации возрастает. Поэтому уран надо извлекать из реактора через несколько недель после начала облучения.

Рис. 7- Накопление изотопов плутония в реакторе: l - ^Pu; 2 - 240 Pu (при малых временах образуется плутоний оружейного качества, а при больших временах - реакторного, т.е. негодного к оружейному использованию).

Общую меру облученности топливного элемента выражают в мега- ватт-днях/тонна. Оружейный плутоний получается из элементов, с небольшим количеством МВт-день/т, в нём образуется меньше побочных изотопов. Топливные элементы в современных водо-водяных реакторах достигают уровня в 33000 МВт-день/т. Типичная экспозиция в бридерном реакторе юоо МВт-день/т. Во время Манхэттенского проекта топливо из природного урана получало всего юо МВт-день/т, поэтому, производился очень высококачественный 239 Ри (всего 1 % 2 4°Pll).

В отличие от США,Германия имела все предпосылки для создания атомной бомбы

Немецкие учёные значительной частью конечно же отрицали свою причастность к созданию атомной бомбы в Германии—но могли ли они сказать правду?...вряд ли

НАЧАЛО

На возможность создания атомной бомбы руководство рейха обратило свое внимание в 1938 году, после известных открытий Гана и Гейзенберга. Именно тогда группа выдающихся ученых направляет Генриху Гиммлеру письмо, в котором говорится:

«Рейхсфюрер! Недавние открытие в области деления уранового ядра позволяют с уверенностью утверждать, что вскоре оно послужит для создания оружия невиданной прежде мощи. Это оружие, если оно окажется в руках Германии, позволит сокрушить всех наших врагов; но если наши противники опередят нас, Третий рейх ждут неисчислимые бедствия.

Поэтому мы считаем исключительно важным дать этому оружию высший приоритет и направить все возможные средства на атомные исследования.»

РУКОВОДСТВО ПРОЕКТА

Общий контроль над всеми научно-исследовательскими, политическими, и материальными направлениями развития германского атомного проекта осуществлял главнокомандующий сухопутных войск рейха.

С самого начала работ по атомной энергии это был генерал-фельдмаршал Браухич, а с 19 декабря 1941 года — Адольф Гитлер.

Прямыми заказчиками и руководителями Уранового проекта были Имперское министерство вооружения и боеприпасов и Верховное командование армии. Проявляемый этими ведомствами пристальный интерес к ядерным исследованиям напрямую стимулировал финансирование и контроль над работами по овладению атомной энергией.

ОРГАНИЗАТОРЫ

Специальный отдел физики имперского исследовательского совета: руководитель государственный советник, профессор, доктор Абрахам Эзау.Управление армейского вооружения: генерал Лееб.

КАДРОВЫЙ СОСТАВ

В 1939-1941 годах нацистская Германия располагала соответствующими условиями для создания атомного оружия: она имела необходимые производственные мощности в химической, электротехнической, машиностроительной промышленности и цветной металлургии, а также достаточные финансовые средства и материалы общего назначения. Научный потенциал также был очень высок, и имелись необходимые знания в области физики атомного ядра.

Такие всемирно известные учёные, как О. Ган, В. Гейзенберг, В. Герлах, К. Дибнер, К. Ф. фон Вайцзеккер, П. Дебай, Г. Гейгер, В. Боте, Г. Гофман, Г. Йос, Р. Дёпель, В. Ханле и В. Гентнер, Э. Шуман и многие другие, обеспечивали значительные успехи атомного проекта.

УРАН

Германия обладала единственными в Европе урановыми приисками в Судетах.

Итак, с сырьем полный порядок. С его обогащением тоже не было проблем, имелось, как минимум, три технологии выделения изотопа уран-235 из массы сырья, причем по эффективности они значительно превосходили американские.

Вдобавок немцы захватили уран из бельгийского Конго—но этот уран был лишним…из-за избытка своего у немцев

США едва ли к середине 1944 года могли приобрести хотя бы 50 кг урана….

Одну из них разработал ученый-ядерщик барон Манфред фон Арденне.

После окончания войны он добровольно пошел на сотрудничество с Советским Союзом, уехал в нашу страну и впоследствии получил две Сталинские премии, которые давали лишь за самые выдающиеся достижения и только гражданам СССР.

Фон Арденне стал одним из немногих иностранных ученых, кто ее получил.

ЗАВОД АУШВИЦ

Завод по обогащению урана — огромное производство, которое пожирает массу электроэнергии и воды, там требуется много рабочих рук. Скрыть такую махину невозможно, особенно в Германии, которую самолеты-разведчики союзников регулярно «прочесывали».

Но вот в Аушвице (немецкое название польского города Освенцим) начинается строительство огромного завода по производству синтетического каучука.

Строит концерн I.G. Farbenindustrie AG, на собственные деньги. Дармовой рабочей силы навалом, рядом протекают три реки, имеются хорошие подъездные пути.

К тому же Освенцим и предприятия вокруг него не бомбят, но вовсе не из соображений гуманизма — их инвесторами были американские капиталисты.

Завод построен, но ни одного килограмма каучука он так и не выдал, хотя постоянно расходовал прямо-таки чудовищное количество электричества. В I.G. Farben плакались: мы разорены, проект убыточный, требовали от властей компенсировать финансовые потери.

В общем, ломали комедию.

А в 1944 году, незадолго до того, как Освенцим освободила Красная армия, завод эвакуировали в неизвестном направлении.

Более чем странное предприятие, скорее всего, и было тем местом, где немцы обогащали уран, да и до приисков от него было рукой подать.

Статистика производства металлического урана в Германии (фирма «Дегусса», Франкфурт) в период войны:

1940 г. — 280,6 кг (в лаборатории)

1941 г. — 2459,8 кг (на заводе)

1942 г. — 5601,7 кг (на заводе)

1943 г. — 3762,1 кг (на заводе)

1944 г. — 710,8 кг (на заводе)

В 1944 году компания начала производство металлического урана в Берлин-Грюнау

декабрь 1944 г. — 224 кг

январь 1945 г. — 376 кг

февраль 1945 г. — 286 кг

РАЗРАБОТКА

До 1942 года нигде в мире не было лучшей технологии обогащения урана, чем в рейхе.

Около 70 немецких учёных, занятых ядерными исследованиями, начали работы по разделению изотопов урана методом центрифугирования.

Несколько групп исследователей выполнили предварительные опыты с урановым "котлом". Это показало, что запуск реактора - лишь вопрос времени и ресурсов.

Немецкие учёные работали в режиме секретности под руководством рейхсминистра почты Вильгельма Онезорге. Он был ярым сторонникомисследований в области ядерной физики и курировал исследовательский центр в Мирсдорфе под Берлином - "Ведомство по особым физическим вопросам".

Онезорге заключил договор с учёным Манфредом фон Арденне, который слыл блестящим экспериментатором. К работе подключился руководимый им научный центр в берлинском районе Лихтерфельде.

Выделять изотопы урана и тем самым добывать "начинку" для атомной бомбы - это и был путь создания "чудо-оружия". Для этого нужен ядерный реактор.

Недалеко от Берлина существовали экспериментальные установки рейхсминистерства почты, на которых можно было получать уран-235.

Проблема заключалась в том, что за час работы установки можно было получить приблизительно 0,1 грамма урана, за десять рабочих часов в день, на трёх установках - 3 грамма. За год свыше 300 граммов. Этого было недостаточно для создания атомной бомбы.

Тогда немецкие атомщики пришли к идее ядерного взрыва малой мощности. Критическую массу можно было снизить путем сочетания расщепления ядра с ядерным синтезом.

При применении подобных хитростей можно было изготовить боеспособную бомбу, для которой потребовалось бы лишь несколько сот граммов высокообогащенного атомного вещества.

Уран-235 можно было обогатить и обратить в плутоний…

В августе 1941г.авторитетный атомщик Хоутерманс написал статью «К вопросу о начале цепной реакции деления ядер» где он первым из немецких ученых подробно описал цепную реакцию под действием быстрых нейтронов, а также рассчитал критическую массу U-235, то есть наименьшую массу, при которой может протекать самоподдерживающаяся цепная ядерная реакция (от 10 до 100кг. американцы пришли к тем же примерно цифрам лишь в ноябре 1941-го).

Но в первую очередь его интересовал плутоний, использование кото-ого делало ненужным разделение изотопов урана.

УРАН И ПЛУТОНИЙ

Как известно, использование атомной энергии человеком началось с урана -235, который был и остается важнейшим видом ядерного горючего. Можно было бы иметь гору природного урана, но не использовать нисколько заключенной в нем энергии, если бы в нем не содержался делящийся изотоп уран -235. Этот изотоп хорошо делится нейтронами любых энергий. Однако в природном металле его очень маловсего 0,7%.

Остальные 99,3% составляет изотоп уран -238, который делится только быстрыми нейтронами. Зато уран -238 отлично поглощает промежуточные нейтроны с энергией от 1 до 10 эв.

И тут начинаются чудеса.

Если с помощью замедлителя графита, тяжелой или обычной воды и других веществ замедлить до этой энергии выбрасываемые при делении ядер изотопа урана -235 быстрые нейтроны, то, захватив такой медленный нейтрон, ядро атома урана -238 приходит в сильно возбужденное состояние и, распадаясь, превращается в конечном итоге в плутоний, период полураспада которого равен уже 24,40 года.

Самое замечательное то, что он становится как бы двойником урана -235 также делится и быстрыми и медленными нейтронами.

А это позволяет в ходе выгорания урана -235 одновременно превратить малую толику практически неделящегося урана -238 в делящийся плутоний -239.

Параллельной программой исследований руководил военный инженер Курт Дибнер под наблюдением выдающегося немецкого физика Вальтера Герлаха, руководителя германского "Уранового клуба" .

Главным теоретиком Uranverein являлся Вернер Гейзенберг.

К 1944 году в работах по созданию атомной бомбы участвовали также Управление по вооружению (Heereswaffe-namt) и СС.

ГЕЙНЗБЕРГ

В начале апреля 1941г. состоялось очередное совещание ведущих ядерщиков Германии.На совещании докладывал Гейзенберг как научный руководитель Уранового проекта.

Гейзенберг доходчиво изложил содержание понятия «ядерные превращения», остановился на перспективах, подчеркнув, что «исследования за предыдущие три года не дали возможности высвободить для технических целей то большое количество энергии, которое сосредоточено в атомном ядре».

Были предложены варианты применения атомной энергии и обсуждена перспектива получения взрывчатого вещества.

О путях извлечения урана-235 он сказал, что «еще не достигнут окончательный прогресс»; о плутониевом варианте — следующие слова:

«Я хотел бы в этом месте упомянуть, что по положительным результатам, полученным в последнее время, кажется, не исключается, что сооружение уранового реактора и способ, указанный Вайцзеккером, однажды могут привести к получению взрывчатого вещества, которое превзойдет по своему действию все известные до сих пор в миллион раз».

Доклад произвел сильное впечатление.

Фельдмаршал Мильх сказал:

«Скажите, профессор, каков будет примерный размер бомбы, способной уничтожить миллионный город?

Дело в том, что в. отместку за бомбардировку Кёльна неплохо было бы стереть с лица земли Лондон. Одно меня тревожит: сможет ли наш бомбардировщик поднять громадную бомбу?»

Гейнзберг:

«Она будет не больше ананаса»

Эти слова вызывают восторженный и тревожный ропот в зале.

Мильх спрашивает снова:

«А наши враги тоже работают над этим оружием?»

Гейзенберг:

«... Необходимо, если воина с Америкой продлится еще много лет, считаться с тем, что техническая реализация энергии атомного ядра однажды может сыграть решающую военную роль.»

Мильх сказал:

«Ну, до этого мы разобьем их всех наголову. Теперь скажите, профессор, когда Германия получит обещанное вами новое оружие?»

Гейзенберг сказал:

«Нужно учесть ограниченность экономических возможностей. Германии... До сих пор не найдено эффективных способов разделения изотопов урана... Создание самоподдерживающейся реакции упирается в проблему чистого металлического урана и особенно тяжелой воды. Нет, нет, о бомбе в ближайшие месяцы и думать нечего, для изготовления атомной бомбы потребуются годы!»

Такая неопределенность не устраивала Шпеера: он вынудил Гейзенберга точнее высказаться о сроках.

Гейзенберг ответил, что научное решение не будет трудным, но решение производственно-технических проблем должно занять не менее двух лет, и то при условии, если каждое требование ученых будет выполняться.

С такой перспективой можно было согласиться, ибо срок был невелик.

ИНЫЕ ОЦЕНКИ

В своем первом письме руководителям ядерных разработок начальник отдела ядерной физики имперского исследовательского совета А. Эзау писал:

«После того как работы, проводившиеся Управлением армейского вооружения, сдвинулись с места в принципиальном решении поставленной задачи, я вижу нынешнюю задачу в продолжении опытов и увеличении действенности опытных установок.

Принимая во внимание современное напряженное положение и достигнутые результаты, я буду вынужден, однако, потребовать еще большей целеустремленности, чем прежде...».

8 мая 1943 г. руководитель планового управления имперского исследовательского совета В. Озенберг в связи с получением соответствующих разведывательных, данных из США докладывал Герингу, что и в Германии проводится работа над созданием урановой бомбы.

В ОДНОМ ШАГЕ ОТ БОМБЫ

В конце мая 1944г. профессор Герлах кратко пометил в служебном отчете:

«Вопрос производства ядерной энергии отличным от расщепления урана путем решается на самой широкой основе». Короче говоря в лаборатории Дибнера готовились к термоядерному синтезу.»

Подробности работы сохранил лишь шестистраничный отчет—«Опыты возбуждения ядерных реакций с помощью взрывов»

Он в итоге выглядел так:

«На полигоне войск СС в Куммерсдорфе было проведено несколько опытов по инициированию термоядерных реакций посредством подрыва кумулятивных зарядов обычного взрывчатого вещества.

В последнем полый серебряный шар диаметром 5см. наполнили тяжелым водородом и обложили со всех сторон взрывчаткой. Серебро должно было сохранить следы радиоактивного излучения, вызванного термоядерными реакциями.

Взрывчатка воспламенялась одновременно с разных сторон. Серебряный шар под действием взрыва сжимался со скоростью 2500м/с. температура и давление достигали громадных величин. Опыт несколько раз, но следов радиоактивного излучения так и не обнаружили.»

Впоследствии специалисты, оценивая опыт, считали, что размеры шара были слишком малы.

ДАЖЕ СКЕПТИК БОР ЗНАЛ ЧТО ГОВОРИЛ

Нильс Бор,не веривший в создание бомбы,после того как эмигрировал в Англию написал Гейзенбергу письмо….оно так и не было доставлено адресату,но говорило о многом.

«Дорогой Гейзенберг … я помню каждое слово наших бесед… вы в туманных выражениях сообщили: под вашим руководством в Германии делается все для того, чтобы создать атомную бомбу»

ЗАКЛЮЧЕНИЕ

Немецкий урановый проект шел полным ходом….и то что якобы он не был приоритетом у немцев—всего лишь миф

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами — ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238 .

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада . Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше одного грама , , или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного — или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента — порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная . Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в , хлорной, .

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только , , нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония ». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

Металлический плутоний используется в ядерном оружии и служит в качестве ядерного топлива. Оксиды плутония используются в качестве энергетического источника для космической техники и находят свое применение в ТВЭЛах. Плутоний используется в элементах питания космических аппаратов. Ядра плутония-239 способны к цепной ядерной реакции при воздействии на них нейтронов, поэтому этот изотоп можно использовать как источник атомной энергии. Более частое использование плутония-239 в ядерных бомбах обусловлено тем, что плутоний занимает меньший объем в сфере, следовательно можно выиграть во взрывной силе бомбы за счет этого свойства. Ядро плутония при ядерной реакции испускает всреднем около 2,895 нейтрона против 2,452 нейтрона у урана-235. Однако затраты на производство плутония примерно в шесть раз больше по сравнению с ураном-235.

Изотопы плутония нашли свое применение при синтезе трансплутониевых элементов. Таким образом, смешанный оксид плутония-242 в 2009 г. и бомбардировки ионами кальция-48 в 2010 году того же изотопа были использованы для получения унунквадия. В Оук-Риджской национальной лаборатории длительное нейтронное облучение Pu используется для получения 24496Cm, 24296Cm, 24997Bk, 25298Cf и 25399Es и 257100Fm. За исключением Pu, все оставшиеся трансурановые элементы производились в прошлом в исследовательских целях. Благодаря нейтронному захвату изотопов плутония в 1944 году Г. Т. Сиборгом и его группой был одержан первый изотоп америция — 24195Am Am). Для подтверждения того, что актиноидов всего 14 был произведен в 1966 году в Дубне синтез ядер резерфордия под руководством академика Г. Н. Флёрова:

24294Pu + 2210Ne → 260104Rf + 4n.

δ-Стабилизированные сплавы плутония применяются при изготовлении топливных элементов, так как они обладают лучшими металлургическими свойствами по сравнению с чистым плутонием, который при нагревании претерпевает фазовые переходы.

«Сверхчистый» плутоний используется в ядерном оружии ВМФ США и применяется на кораблях и подводных лодках под ядерной защитой из свинца, что снижает дозовую нагрузку на команду.

Плутоний-238 и плутоний-239 являются самыми широко синтезируемыми изотопами.

  • Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо.

Ядерное оружие

Плутоний очень часто применялся в ядерных бомбах. Историческим фактом является сброс ядерной бомбы на Нагасаки в 1945 г. США. Бомба, сброшенная на этот город, содержала в себе 6,2 кг плутония. Мощность взрыва составила 21 килотонну. К концу 1945 года погибло 60-80 тыс. человек. По истечении 5 лет, общее количество погибших, с учётом умерших от рака и других долгосрочных воздействий взрыва, могло достичь или даже превысить 140 000 человек.

Принцип, по которому происходил ядерный взрыв с участием плутония, заключался в конструкции ядерной бомбы. «Ядро» бомбы состояло из сферы, наполненной плутонием-239, которая в момент столкновения с землей сжималась до миллиона атмосфер за счет конструкции и благодаря окружающему эту сферу взрывчатому веществу. После удара ядро расширялось в объеме и в плотности за десяток микросекунд, при этом сжимаемая сборка проскакивала критическое состояние на тепловых нейтронах и становилась существенно сверхкритической на быстрых нейтронах, то есть начиналась цепная ядерная реакция с участием нейтронов и ядер элемента. При этом следовало учитывать, что бомба не должна была взорваться преждевременно. Однако это практически невозможно, так как, чтобы сжать плутониевый шар за десяток наносекунд всего на 1 см, требуется придать веществу ускорение, в десятки триллионов раз превышающее ускорение свободного падения. При конечном взрыве ядерной бомбы температура повышается до десятков миллионов градусов. Следует отметить, что в наше время для создания полноценного ядерного заряда достаточно 8-9 кг этого элемента.

Всего один килограмм плутония-239 может произвести взрыв, который будет эквивалентен 20000 т тротила. Даже 50 г элемента при делении всех ядер произведут взрыв, равный детонации 1000 т тротила. Данный изотоп является единственным подходящим нуклидом для применения в ядерном оружии, так как присутствие хотя бы 1 % Pu приведет к образованию большого количества нейтронов, которые не позволят эффективно применять пушечную схему заряда ядерной бомбы. Остальные изотопы рассматриваются только из-за их вредного действия.

Плутоний-240 может находиться в ядерной бомбе в малых количествах, однако если его содержание будет повышено, произойдет преждевременная цепная реакция. Данный изотоп имеет высокую вероятность спонтанного деления, что делает невозможным большой процент его содержания в делящемся материале.

По данным телеканала Al-Jazeera, Израиль имеет около 118 боеголовок с плутонием в качестве радиоактивного вещества. Считается, что Южная Корея имеет около 40 кг плутония, количества которого достаточно для производства 6 ядерных ракет. По оценкам МАГАТЭ в 2007 году, производимого в Ираке плутония хватало на две ядерные боеголовки в год. В 2006 г. Пакистан начал строительство ядерного реактора, который позволит нарабатывать около 200 кг радиоактивного элемента в год. В пересчете на количество ядерных боеголовок, эта цифра будет составлять приблизительно 40-50 бомб.

Между Россией и США было подписано несколько договоров на протяжении первого десятилетия 21-го века. Так в частности, в 2003 г. был подписан договор о переработке 68 т плутония на Балаковской АЭС в MOX-топливо до 2024 года. В 2007 г. страны подписали план об утилизации Россией 34 т плутония, созданного для российских оружейных программ. В 2010 году был подписан договор об утилизации ядерного оружия, в частности плутония, количества которого хватило бы на производство 17 тыс. ядерных боеголовок.

В 2010 году 17 ноября между США и Казахстаном было подписано соглашение о закрытии промышленного ядерного реактора БН-350 в городе Актау, который вырабатывал электроэнергию за счет плутония. Этот реактор был первым в мире и Казахстане опытно-промышленным реактором на быстрых нейтронах; срок его работы составил 27 лет.

Ядерное загрязнение

В период, когда начинались ядерные испытания в основе которых лежал плутоний, и когда его радиоактивные свойства только начинались изучаться, в атмосферу было выброшено свыше 5 т элемента. С 1970-х годов доля плутония в радиоактивном заражении атмосферы Земли начала возрастать.

В северо-западную часть Тихого океана плутоний попал в основном благодаря ядерным испытаниям. Повышенное содержание элемента объясняется проведением США ядерных испытаний на территории Маршалловых Островов в Тихоокеанском полигоне в 1950-х годах. Основное загрязнение от этих испытаний пришлось на 1960 года. Исходя из оценки ученых, нахождение плутония в тихом океане повышено по сравнению с общим распространением ядерных материалов на земле. По некоторым расчетам, доза облучения, исходящего от цезия-137, на атоллах Маршалловых островов составляет примерно 95 %, а на остальные 5 приходятся изотопы стронция, америция и плутония.

Плутоний в океане переносится благодаря физическим и биогеохимическим процессам. Время нахождения плутония в поверхностных водах океана составляет от 6 до 21 года, что, как правило, короче, чем у цезия-137. В отличие от этого изотопа, плутоний является элементом, частично реагирующим с окружающей средой и образующим 1-10 % нерастворимых соединений от общей массы, попавшей в окружающую среду. Плутоний в океане выпадает на дно вместе с биогенными частицами, из которых он восстанавливается в растворимые формы в результате микробного разложения. Наиболее распространенными из его изотопов в морской среде являются плутоний-239 и плутоний-240.

В январе 1968 года, американский самолет B-52 с четырьмя зарядами ядерного оружия в результате неуспешной посадки разбился на льду вблизи Туле, на территории Гренландии. Столкновение вызвало взрыв и фрагментацию оружия, в результате чего плутоний попал на льдину. После взрыва верхний слой загрязненного снега была снесен и в результате образовалась трещина, через которую плутоний попал в воду. Для уменьшения урона природе было собрано примерно 1,9 млрд литров снега и льда, которые могли подвергнуться радиоактивному загрязнению. Впоследствии оказалось, что один из четырех зарядов так и не был найден.

Известен случай, когда советский космический аппарат Космос-954 24 января 1978 года с ядерным источником энергии на борту при неконтролируемом сходе с орбиты упал на территорию Канады. Данное происшествие привело к попаданию в окружающую среду 1 кг плутония-238 на площадь около 124 000 м² .

Попадание плутония в окружающую среду связано не только с техногенными происшествиями. Известны случаи утечки плутония как из лабораторных, так и из заводских условий. Было около 22 аварийных случаев утечки из лабораторий урана-235 и плутония-239. На протяжении 1953-1978 гг. аварийные случаи привели к потере от 0,81 до 10,1 кг Pu. Происшествия на промышленных предприятиях суммарно привели к смерти двух человек в г. Лос-Аламос из-за двух случаев аварий и потерь 6,2 кг плутония. В городе Саров в 1953 и 1963 гг. примерно 8 и 17,35 кг попало за пределы ядерного реактора. Один из них привел к разрушению ядерного реактора в 1953 году.

Уровни радиоактивности изотопов по состоянию на апрель 1986 года.

Известен случай аварии на Чернобыльской АЭС, который произошел 26 апреля 1986 года. В результате разрушения четвертного энергоблока в окружающую среду было выброшено 190 т радиоактивных веществ на площадь около 2200 км². Восемь из 140 т радиоактивного топлива реактора оказались в воздухе. Загрязненная площадь составила 160 000 км² . Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии. Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14×10 Бк, в том числе:

  • 1,8 ЭБк — 13153I,
  • 0,085 ЭБк — 13755Cs,
  • 0,01 ЭБк — 9038Sr
  • 0,003 ЭБк — изотопы плутония,
  • на долю благородных газов приходилось около половины от суммарной активности.

В настоящее время большинство жителей загрязнённой зоны получает менее 1 мЗв в год сверх естественного фона.

Источник энергии и тепла

Как известно, атомная энергия применяется для преобразования в электроэнергию за счет нагревания воды, которая испаряясь и образуя перегретый пар вращает лопатки турбин электрогенераторов. Преимуществом данной технологии является отсутствие каких либо парниковых газов, которые оказывают пагубное воздействие на окружающую среду. По состоянию за 2009 год 438 атомных станций по всему миру генерировали примерно 371,9 ГВт электроэнергии. Однако минусом ядерной промышленности являются ядерные отходы, которых в год отрабатывается приблизительно 12000 т. Данное количество отработанного материала представляет собой довольно сложную задачу перед сотрудниками АЭС. К 1982 году было подсчитано, что аккумулировано ~300 т плутония.

Таблетка диоксида плутония-238.

Желто-коричневый порошок, состоящий из диоксида плутония, способен выдерживать нагревание до температуры 1200 °C. Синтез соединения происходит с помощью разложения тетрагидроксида или тетранитрата плутония в атмосфере кислорода:

.

Полученный порошок шоколадного цвета спекается и нагревается в токе влажного водорода до 1500 °C. При этом образуются таблетки плотностью 10,5-10,7 г/см³, которые можно использовать в качестве ядерного топлива. Диоксид плутония является самым стабильным и инертным из оксидов плутония и посредством нагревания до высоких температур разлагается на составляющие, и потому применяется при переработке и хранении плутония, а также его дальнейшего использования как источника электроэнергии. Один килограмм плутония эквивалентен примерно 22 млн кВт·ч тепловой энергии.

В СССР было произведено несколько РИТЭГов Топаз, которые были предназначены для генерации электричества для космических аппаратов. Эти аппараты были предназначены работать с плутонием-238, который является α-излучателем. После падения Советского Союза США закупили несколько таких аппаратов для изучения их устройства и дальнейшего применения в своих долговременных космических программах.

РИТЭГ зонда Новые Горизонты.

Вполне достойной заменой плутонию-238 можно было бы назвать полоний-210. Его тепловыделение составляет 140 Вт/г, а всего один грамм может разогреться до 500 °C. Однако из-за его чрезвычайно малого для космических миссий периода полураспада применение этого изотопа в космической отрасли сильно ограничено.

Плутоний-238 в 2006 г. при запуске зонда New Horizons к Плутону нашел свое применение в качестве источника питания для зонда. Радиоизотопный генератор содержал 11 кг высокочистого диоксида Pu, производившего в среднем 220 Вт электроэнергии на протяжении всего пути. Высказывались опасения о неудачном запуске зонда, однако он все таки состоялся. После запуска зонд развил скорость 36000 миль/ч благодаря силам гравитации Земли. В 2007 году благодаря гравитационному маневру вокруг Юпитера его скорость повысилась еще на 9 тыс. миль, что позволит ему приблизиться на минимальное расстояние к Плутону в июле 2015 года и затем продолжить свое наблюдение за поясом Койпера.

Зонды Галилео и Кассини были также оборудованы источниками энергии, в основе которых лежал плутоний. Изотоп будет применяться и на будущих миссиях, например марсоход Curiosity будет получать энергию благодаря плутонию-238. Его спуск на поверхность Марса планируется провести в августе 2012 года. Марсоход будет использовать последнее поколение РИТЭГов, называемое Multi-Mission Radioisotope Thermoelectric Generator. Это устройство будет производить 125 Вт электрической мощности, а по истечению 14 лет — 100 Вт. Для работы марсохода будет производиться 2,5 кВт·ч энергии за счет распада ядер. Плутоний-238 является оптимальным источником энергии, выделяющим 0,56 Вт·г. Применение этого изотопа с теллуридом свинца, который используется в качестве термоэлектрического элемента, образует очень компактный и долговременный источник электричества без каких бы то ни было движущих частей конструкции, что позволяет «сэкономить» пространство космических аппаратов.

РИТЭГ SNAP-27, применявшийся в миссии Аполлон-14.

Несколько килограммов PuO 2 использовались не только на Галилео, но и на некоторых миссиях Аполлонов. Генератор электроэнергии SNAP-27, тепловая и электрическая мощность которого составляла 1480 Вт и 63,5 Вт соответственно, содержал 3,735 кг диоксида плутония-238. Для уменьшения риска взрыва или иных возможных происшествий, использовался бериллий в качестве термостойкого, лёгкого и прочного элемента. SNAP-27 был последним типом генераторов, использовавшихся NASA для космических миссий; предыдущие типы использовали другие источники электроэнергии.

При проведении пассивного сейсмического эксперимента на Луне в миссии Аполлон-11 были использованы два радиоизотопных тепловых источника мощностью 15 Вт, которые содержали 37,6 г диоксида плутония в виде микросфер. Генератор был использован в миссиях Аполлона-12, 14, 15, 16, 17. Он был призван обеспечивать электроэнергией научное оборудование, установленное на космических аппаратах. Во время миссии Аполлона-13 произошло схождение лунного модуля с траектории, в результате чего он сгорел в плотных слоях атмосферы. Внутри SNAP-27 был использован вышеупомянутый изотоп, который окружен устойчивыми к коррозии материалами и будет храниться в них еще 870 лет.

Плутоний-236 и плутоний-238 применяется для изготовления атомных электрических батареек, срок службы которых достигает 5 и более лет. Их применяют в генераторах тока, стимулирующих работу сердца. По состоянию на 2003 г. в США было 50-100 человек, имеющих плутониевый кардиостимулятор. Применение плутония-238 может распространиться на костюмы водолазов и космонавтов. Бериллий вместе с вышеуказанным изотопом применяется как источник нейтронного излучения.

В 2007 г. Великобритания начала снос старейшей ядерной электростанции Calder Hall на плутонии, которая начала свою работу 17 октября 1956 года и завершила 29 сентября 2007.

Реакторы-размножители

Схематическое изображение реакторов-размножителей на быстрых нейтронах с жидкометаллическим теплоносителем, с интегральной и петлевой компоновкой оборудования.

Для получения больших количеств плутония строятся реакторы-размножители, которые позволяют нарабатывать значительные количества плутония. Реакторы названы именно «размножителями» потому, что с их помощью возможно получение делящегося материала в количестве, превышающем его затраты на получение.

В США строительство первых реакторов данного типа началось еще до 1950 г. В СССР и Великобритании к их созданию приступили в начале 1950 гг. Однако первые реакторы были созданы для изучения нейтронно-физических характеристик реакторов с жестким спектром нейтронов. Поэтому первые образцы должны были продемонстрировать не большие производственные количества, а возможность реализации технических решений, закладываемых в первые реакторы такого типа.

Отличие реакторов-разможителей от обычных ядерных реакторов состоит в том, что нейтроны в них не замедляются, то есть отсутствует замедлитель нейтронов, для того, чтобы их как можно больше прореагировало с ураном-238. После реакции образуются атомы урана-239, который в дальнейшем и образует плутоний-239. В таких реакторах центральная часть, содержащая диоксид плутония в обедненном диоксиде урана, окружена оболочкой из еще более обедненного диоксида урана-238, в которой и образуется Pu. Используя вместе U и U такие реакторы могут производить из природного урана энергии в 50-60 раз больше, позволяя таким образом использовать запасы наиболее пригодных для переработки урановых руд. Коэффициент воспроизводства рассчитывается отношением произведенного ядерного топлива к затраченному. Однако достижение высоких показателей воспроизводства нелегкая задача. ТВЭЛы в них должны охлаждаться чем-то отличным от воды, которая уменьшает их энергию. Было предложено использование жидкого натрия в качестве охлаждающего элемента. В реакторах-размножителях используют обогащенный более 15 % по массе уран-235, для достижения необходимого нейтронного облучения и коэффициента воспроизводства примерно 1-1,2.

В настоящее время экономически более выгодно получение урана из урановой руды, обогащенной до 3 % ураном-235, чем размножение урана в плутоний-239 с применением урана-235, обогащенного на 15 %. Проще говоря, преимуществом бридеров является способность в процессе работы не только производить электроэнергию, но и утилизировать непригодный в качестве ядерного горючего уран-238.