ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

ГОСТ 2.755-87
(CT СЭВ 5720-86)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва 1998

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В ЭЛЕКТРИЧЕСКИХ СХЕМАХ.

УСТРОЙСТВА КОММУТАЦИОННЫЕ
И КОНТАКТНЫЕ СОЕДИНЕНИЯ

Unified system for design documentation.

Graphic designations in diagrams.

Commutational devices and contact connections

ГОСТ
2.755-87

(CT СЭВ 5720-86)

Дата введения 01.01.88

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов. Настоящий стандарт не устанавливает условные графические обозначения на схемах железнодорожной сигнализации, централизации и блокировки. Условные графические обозначения механических связей, приводов и приспособлений - по ГОСТ 2.721. Условные графические обозначения воспринимающих частей электромеханических устройств - по ГОСТ 2.756. Размеры отдельных условных графических обозначений и соотношение их элементов приведены в приложении. 1. Общие правила построения обозначений контактов. 1.1. Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена. 1.2. Контакты коммутационных устройств состоят из подвижных и неподвижных контакт-деталей. 1.3. Для изображения основных (базовых) функциональных признаков коммутационных устройств применяют условные графические обозначения контактов, которые допускается выполнять в зеркальном изображении: 1) замыкающих 2) размыкающих 3) переключающих 4) переключающих с нейтральным центральным положением 1.4. Для пояснения принципа работы коммутационных устройств при необходимости на их контакт-деталях изображают квалифицирующие символы, приведенные в табл. 1.

Таблица 1

Наименование

Обозначение

1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание. Обозначения, приведенные в пп. 1 - 4, 7 - 9 настоящей таблицы, помещают на неподвижных контакт-деталях, а обозначения в пп. 5 и 6 - на подвижных контакт-деталях.
2. Примеры построения обозначений контактов коммутационных устройств приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Контакт коммутационного устройства:
1) переключающий без размыкания цепи (мостовой)
2) с двойным замыканием
3) с двойным размыканием
2. Контакт импульсный замыкающий:
1) при срабатывании
2) при возврате
3. Контакт импульсный размыкающий:
1) при срабатывании
2) при возврате
3) при срабатывании и возврате
4. Контакт в контактной группе, срабатывающий раньше по отношению к другим контактам группы:
1) замыкающий
2) размыкающий
5. Контакт в контактной группе, срабатывающий позже по отношению к другим контактам группы:
1) замыкающий
2) размыкающий
6. Контакт без самовозврата:
1) замыкающий
2) размыкающий
7. Контакт с самовозвратом:
1) замыкающий
2) размыкающий
8. Контакт переключающий с нейтральным центральным положением, с самовозвратом из левого положения и без возврата из правого положения
9. Контакт контактора:
1) замыкающий
2) размыкающий
3) замыкающий дугогасительный
4) размыкающий дугогасительный
5) замыкающий с автоматическим срабатыванием
10. Контакт выключателя
11. Контакт разъединителя
12. Контакт выключателя-разъединителя
13. Контакт концевого выключателя:
1) замыкающий
2) размыкающий
14. Контакт, чувствительный к температуре (термоконтакт):
1) замыкающий
2) размыкающий
15. Контакт замыкающий с замедлением, действующим:
1) при срабатывании

2) при возврате

3) при срабатывании и возврате

16. Контакт размыкающий с замедлением, действующим:
1) при срабатывании

2) при возврате

3) при срабатывании и возврате

Примечание к пп. 15 и 16. Замедление происходит при движении в направлении от дуги к ее центру.
3. Примеры построения обозначений контактов двухпозиционных коммутационных устройств приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Контакт замыкающий выключателя:
1) однополюсный

Однолинейное

Многолинейное

2) трехполюсный

2. Контакт замыкающий выключателя трехполюсного с автоматическим срабатыванием максимального тока

3. Контакт замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления:
1) автоматически
2) посредством вторичного нажатия кнопки
3) посредством вытягивания кнопки
4) посредством отдельного привода (пример нажатия кнопки-сброс)
4. Разъединитель трехполюсный
5. Выключатель-разъединитель трехполюсный
6. Выключатель ручной

7. Выключатель электромагнитный (реле)

8. Выключатель концевой с двумя отдельными цепями
9. Выключатель термический саморегулирующий Примечание. Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом
10. Выключатель инерционный
11. Переключатель ртутный трехконечный
4. Примеры построения обозначений многопозиционных коммутационных устройств приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Переключатель однополюсный многопозиционный (пример шестипозиционного)

Примечание. Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами (пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях)

2. Переключатель однополюсный, шестипозиционный с безобрывным переключателем

3. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три соседние цепи в каждой позиции

4. Переключатель однополюсный, многопозиционный с подвижным контактом, замыкающим три цепи, исключая одну промежуточную

5. Переключатель однополюсный, многопозиционный с подвижным контактом, который в каждой последующей позиции подключает параллельную цепь к цепям, замкнутым в предыдущей позиции

6. Переключатель однополюсный, шестипозиционный с подвижным контактом, не размыкающим цепь при переходе его из третьей в четвертую позицию

7. Переключатель двухполюсный, четырехпозиционный

8. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт - позже, чем соответствующие контакты нижнего полюса

9. Переключатель многопозиционный независимых цепей (пример шести цепей)
Примечания к пп. 1 - 9:
1. При необходимости указания ограничения движения привода переключателя применяют диаграмму положения, например:
1) привод обеспечивает переход подвижного контакта переключателя от позиции 1 к позиции 4 и обратно

2) привод обеспечивает переход подвижного контакта от позиции 1 к позиции 4 и далее в позицию 1; обратное движение возможно только от позиции 3 к позиции 1

2. Диаграмму положения связывают с подвижным контактом переключателя линией механической связи

10. Переключатель со сложной коммутацией изображают на схеме одним из следующих способов: 1) общее обозначение (пример обозначения восемнадцатипозиционного роторного переключателя с шестью зажимами, обозначенными от А до F)

2) обозначение, составленное согласно конструкции

11. Переключатель двухполюсный, трехпозиционный с нейтральным положением
12. Переключатель двухполюсный, трехпозиционный с самовозвратом в нейтральное положение
5. Обозначения контактов контактных соединений приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Контакт контактного соединения:
1) разъемного соединения:
- штырь

- гнездо

2) разборного соединения

3) неразборного соединения

2. Контакт скользящий:
1) по линейной токопроводящей поверхности
2) по нескольким линейным токопроводящим поверхностям
3) по кольцевой токопроводящей поверхности
4) по нескольким кольцевым токопроводящим поверхностям Примечание. При выполнении схем с помощью ЭВМ допускается применять штриховку вместо зачернения
6. Примеры построения обозначений контактных соединений приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Соединение контактное разъемное

2. Соединение контактное разъемное четырехпроводное

3. Штырь четырехпроводного контактного разъемного соединения

4. Гнездо четырехпроводного контактного разъемного соединения

Примечание. В пп. 2 - 4 цифры внутри прямоугольников обозначают номера контактов
5. Соединение контактное разъемное коаксиальное

6. Перемычки контактные
Примечание. Вид связи см. табл. 5 , п. 1.
7. Колодка зажимов Примечание. Для указания видов контактных соединений допускается применять следующие обозначения:

1) колодки с разборными контактами
2) колодки с разборными и неразборными контактами
8. Перемычка коммутационная:
1) на размыкание

2) с выведенным штырем
3) с выведенным гнездом
4) на переключение
9. Соединение с защитным контактом

7. Обозначения элементов искателей приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Щетка искателя с размыканием цепи при переключении

2. Щетка искателя без размыкания цепи при переключении

3. Контакт (выход) поля искателя

4. Группа контактов (выходов) поля искателя

5. Поле искателя контактное

6. Поле искателя контактное с исходным положением Примечание. Обозначение исходного положения применяют при необходимости
7. Поле искателя контактное с изображением контактов (выходов)

8. Поле искателя с изображением групп контактов (выходов)

8. Примеры построения обозначений искателей приведены в табл. 8.

Таблица 8

Наименование

Обозначение

1. Искатель с одним движением без возврата щеток в исходное положение
2. Искатель с одним движением с возвратом щеток в исходное положение.
Примечание. При использовании искателя в четырехпроводном тракте применяют обозначение искателя с возвратом щеток в исходное положение

В данной статье покажем таблицу графических обозначений радиоэлементов на схеме.

Человек, не знающий графического обозначения элементов радиосхемы, никогда не сможет её «прочесть». Этот материал предназначен для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал встречается очень редко. Именно этим он и ценен. В разных изданиях встречаются «отклонения» от государственного стандарта (ГОСТа) в графическом обозначении элементов. Эта разница важна только для органов государственной приёмки, а для радиолюбителя практического значения не имеет, лишь бы был понятен тип, назначение и основные характеристики элементов. Кроме того, в разных странах и обозначение может быть разным. Поэтому, в этой статье приводятся разные варианты графического обозначения элементов на схеме (плате). Вполне может быть, что здесь вы увидите не все варианты обозначения.

Любой элемент на схеме имеет графическое изображение и его буквенно-цифровое обозначение. Форма и размеры графического обозначения определены ГОСТом, но как я писал ранее, не имеют практического значения для радиолюбителя. Ведь если на схеме, изображение резистора будет по размеру меньше чем по ГОСТам, радиолюбитель не перепутает его с другим элементом. Любой элемент обозначается на схеме одной, или двумя буквами (первая обязательно — прописная), и порядковым номером на конкретной схеме. Например R25 обозначает, что это резистор (R), и на изображённой схеме – 25-й по счёту. Порядковые номера, как правило, присваиваются сверху вниз и слева направо. Бывает, когда элементов не больше двух десятков, их просто не нумеруют. Встречается, что при доработках схем, некоторые элементы с «большим» порядковым номером могут стоять не в том месте схемы, по ГОСТу – это нарушение. Явно, заводскую приёмку подкупили взяткой в виде банальной шоколадки, или бутылкой необычной формы дешёвого коньяка. Если схема большая, то найти элемент, стоящий не по порядку бывает затруднительно. При модульном (блочном) построении аппаратуры, элементы каждого блока имеют свои порядковые номера. Ниже вы можете ознакомиться с таблицей, содержащей обозначения и описания основных радиоэлементов, для удобства в конце статьи есть ссылка для скачивания таблицы в формате WORD.

Таблица графических обозначений радиоэлементов на схеме

Графическое обозначение (варианты) Наименование элемента Краткое описание элемента
Элемент питания Одиночный источник электрического тока, в том числе: часовые батарейки; пальчиковые солевые батарейки; сухие аккумуляторные батарейки; батареи сотовых телефонов
Батарея элементов питания Набор одиночных элементов, предназначенный для питания аппаратуры повышенным общим напряжением (отличным от напряжения одиночного элемента), в том числе: батареи сухих гальванических элементов питания; аккумуляторные батареи сухих, кислотных и щелочных элементов
Узел Соединение проводников. Отсутствие точки (кружочка) говорит о том, что проводники на схеме пересекаются, но не соединяются друг с другом – это разные проводники. Не имеет буквенно-цифрового обозначения
Контакт Вывод радиосхемы, предназначенный для «жёсткого» (как правило — винтового) подсоединения к нему проводников. Чаще используется в больших системах управления и контроля электропитанием сложных многоблочных электросхем
Гнездо Соединительный легкоразъёмный контакт типа «разъём» (на радиолюбительском сленге — «мама»). Применяется преимущественно для кратковременного, легко разъединяемого подключения внешних приборов, перемычек и других элементов цепи, например в качестве контрольного гнезда
Розетка Панель, состоящая из нескольких (не менее 2-х) контактов «гнездо». Предназначена для многоконтактного соединения радиоаппаратуры. Типичный пример – бытовая электророзетка «220В»
Штекер Контактный легкоразъёмный штыревой контакт (на сленге радиолюбителей — «папа»), предназначенный для кратковременного подключения к участку электрорадиоцепи
Вилка Многоштеккерный разъем, с числом контактов не менее двух предназначенный для многоконтактного соединения радиоаппаратуры. Типичный пример — сетевая вилка бытового прибора «220В»
Выключатель Двухконтактный прибор, предназначенный для замыкания (размыкания) электрической цепи. Типичный пример – выключатель света «220В» в помещении
Переключатель Трёхконтактный прибор, предназначенный для переключения электрических цепей. Один контакт имеет два возможных положения
Тумблер Два «спаренных» переключателя — переключаемых одновременно одной общей рукояткой. Отдельные группы контактов могут изображаться в разных частях схемы, тогда они могут обозначаться как группа S1.1 и группа S1.2. Кроме того, при большом расстоянии на схеме они могут соединяться одной пунктирной линией
Галетный переключатель Переключатель, в котором один контакт «ползункового» типа, может переключаться в несколько разных положений. Бывают спаренные галетные переключатели, в которых имеется несколько групп контактов
Кнопка Двухконтактный прибор, предназначенный для кратковременного замыкания (размыкания) электрической цепи путём нажатия на него. Типичный пример – кнопка дверного звонка квартиры
Общий провод (GND) Контакт радиосхемы, имеющий условный «нулевой» потенциал относительно остальных участков и соединений схемы. Обычно, это вывод схемы, потенциал которого либо самый отрицательный относительно остальных участков схемы (минус питания схемы), либо самый положительный (плюс питания схемы). Не имеет буквенно-цифрового обозначения
Заземление Вывод схемы, подлежащий подключению к Земле. Позволяет исключить возможное появление вредоносного статического электричества, а также предотвращает поражение от электрического тока в случае возможного попадания опасного напряжения на поверхности радиоприборов и блоков, которых касается человек, стоящий на мокром грунте. Не имеет буквенно-цифрового обозначения
Лампа накаливания Электрический прибор, применяемый для освещения. Под действием электрического тока происходит свечение вольфрамовой нити накала (её горение). Не сгорает нить потому, что внутри колбы лампы нет химического окислителя – кислорода
Сигнальная лампа Лампа, предназначенная для контроля (сигнализирования) состояния различных цепей устаревшей аппаратуры. В настоящее время, вместо сигнальных ламп используют светодиоды, потребляющие более слабый ток и более надёжные
Неоновая лампа Газоразрядная лампа, наполненная инертным газом. Цвет свечения зависит от вида газа-наполнителя: неон – красно-оранжевое, гелий – синее, аргон – сиреневое, криптон – сине-белое. Применяют и другие способы придать определённый цвет лампе наполненной неоном – использование люминесцентных покрытий (зелёного и красного свечения)
Лампа дневного света (ЛДС) Газоразрядная лампа, в том числе колба миниатюрной энергосберегающей лампы, использующая люминесцентное покрытие – химический состав с послесвечением. Применяется для освещения. При одинаковой потребляемой мощности, обладает более ярким светом, чем лампа накаливания
Электромагнитное реле Электрический прибор, предназначенный для переключения электрических цепей, путём подачи напряжения на электрическую обмотку (соленоид) реле. В реле может быть несколько групп контактов, тогда эти группы нумеруются (например Р1.1, Р1.2)
Электрический прибор, предназначенный для измерения силы электрического тока. В своём составе имеет неподвижный постоянный магнит и подвижную магнитную рамку (катушку), на которой крепится стрелка. Чем больше ток, протекающий через обмотку рамки, тем на больший угол стрелка отклоняется. Амперметры подразделяются по номинальному току полного отклонения стрелки, по классу точности и по области применения
Электрический прибор, предназначенный для измерения напряжения электрического тока. Фактически ничем не отличается от амперметра, так как делается из амперметра, путём последовательного включения в электрическую цепь через добавочный резистор. Вольтметры подразделяются по номинальному напряжению полного отклонения стрелки, по классу точности и по области применения
Резистор Радиоприбор, предназначенный для уменьшения тока, протекающего по электрической цепи. На схеме указывается значение сопротивления резистора. Рассеиваемая мощность резистора изображается специальными полосками, или римскими символами на графическом изображении корпуса в зависимости от мощности (0,125Вт – две косых линии «//», 0,25 – одна косая линия «/», 0,5 – одна линия вдоль резистора «-«, 1Вт – одна поперечная линия «I», 2Вт – две поперечных линии «II», 5Вт – галочка «V», 7Вт – галочка и две поперечных линии «VII», 10Вт – перекрестие «Х», и т.д.). У Американцев обозначение резистора – зигзагообразное, как показано на рисунке
Переменный резистор Резистор, сопротивление которого на его центральном выводе регулируется с помощью «ручки-регулятора». Номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется. Переменные резисторы бывают спаренные (2 на одном регуляторе)
Подстроечный резистор Резистор, сопротивление которого на его центральном выводе регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Как и у переменного резистора, номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется
Терморезистор Полупроводниковый резистор, сопротивление которого изменяется в зависимости от окружающей температуры. При увеличении температуры, сопротивление терморезистора уменьшается, а при уменьшении температуры наоборот, увеличивается. Применяется для измерения температуры в качестве термодатчика, в цепях термостабилизации различных каскадов аппаратуры и т.д.
Фоторезистор Резистор, сопротивление которого изменяется в зависимости от освещённости. При увеличении освещённости, сопротивление терморезистора уменьшается, а при уменьшении освещённости наоборот – увеличивается. Применяется для измерения освещенности, регистрации колебаний света и т.д. Типичный пример – «световой барьер» турникета. В последнее время вместо фоторезисторов чаще используются фотодиоды и фототранзисторы
Варистор Полупроводниковый резистор, резко уменьшающий своё сопротивление при достижении приложенного к нему напряжения определённого порога. Варистор предназначен для защиты электрических цепей и радиоприборов от случайных «скачков» напряжения
Конденсатор Элемент радиосхемы, обладающий электрической ёмкостью, способный накапливать электрический заряд на своих обкладках. Применение в зависимости от величины ёмкости разнообразно, самый распространённый радиоэлемент после резистора
Конденсатор, при изготовлении которого применяется электролит, за счет этого при сравнительно малых размерах обладает намного большей ёмкостью, чем обыкновенный «неполярный» конденсатор. При его применении необходимо соблюдать полярность, в противном случае электролитический конденсатор теряет свои накопительные свойства. Используется в фильтрах питания, в качестве проходных и накопительных конденсаторов низкочастотной и импульсной аппаратуры. Обычный электролитический конденсатор саморазряжается за время не более минуты, обладает свойством «терять» ёмкость вследствие высыхания электролита, для исключения эффектов саморазряда и потери ёмкости используют более дорогие конденсаторы – танталовые
Конденсатор, у которого ёмкость регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Используется в высокочастотных контурах радиоаппаратуры
Конденсатор, ёмкость которого регулируется с помощью выведенной наружу радиоприёмного устройства рукоятки (штурвала). Используется в высокочастотных контурах радиоаппаратуры в качестве элемента селективного контура, изменяющего частоту настройки радиопередатчика, или радиоприемника
Высокочастотный прибор, обладающий резонансными свойствами подобно колебательному контуру, но на определённой фиксированной частоте. Может применяться на «гармониках» — частотах, кратных резонансной частоте, указанной на корпусе прибора. Часто, в качестве резонирующего элемента используется кварцевое стекло, поэтому резонатор называют «кварцевый резонатор», или просто «кварц». Применяется в генераторах гармонических (синусоидальных) сигналов, тактовых генераторах, узкополосных частотных фильтрах и др.
Обмотка (катушка) из медного провода. Может быть бескаркасной, на каркасе, а может исполняться с использованием магнитопровода (сердечника из магнитного материала). Обладает свойством накопления энергии за счёт магнитного поля. Применяется в качестве элемента высокочастотных контуров, частотных фильтров и даже антенны приёмного устройства
Катушка с регулируемой индуктивностью, у которой имеется подвижный сердечник из магнитного (ферромагнитного) материала. Как правило, мотается на цилиндрическом каркасе. При помощи немагнитной отвёртки регулируется глубина погружения сердечника в центр катушки, тем самым изменяется её индуктивность
Катушка индуктивности, содержащая большое количество витков, которая исполняется с использованием магнитопровода (сердечника). Как и высокочастотная катушка индуктивности, дроссель обладает свойством накопления энергии. Применяется в качестве элементов низкочастотных фильтров звуковой частоты, схем фильтров питания и импульсного накопления
Индуктивный элемент, состоящий из двух и более обмоток. Переменный (изменяющийся) электрический ток, прикладываемый к первичной обмотке, вызывает возникновение магнитного поля в сердечнике трансформатора, а оно в свою очередь наводит магнитную индукцию во вторичной обмотке. В результате на выходе вторичной обмотки появляется электрический ток. Точки на графическом обозначении у краёв обмоток трансформатора обозначают начала этих обмоток, римские цифры – номера обмоток (первичная, вторичная)
Полупроводниковый прибор, способный пропускать ток в одну сторону, а в другую нет. Направление тока можно определить по схематическому изображению – сходящиеся линии, подобно стрелке указывают направление тока. Выводы анода и катода буквами на схеме не обозначаются
Специальный полупроводниковый диод, предназначенный для стабилизации приложенного к его выводам напряжения обратной полярности (у стабистора – прямой полярности)
Специальный полупроводниковый диод, обладающий внутренней ёмкостью и изменяющий её значение в зависимости от амплитуды приложенного к его выводам напряжения обратной полярности. Применяется для формирования частотно-модулированного радиосигнала, в схемах электронного регулирования частотными характеристиками радиоприемников
Специальный полупроводниковый диод, кристалл которого светится под действием приложенного прямого тока. Используется как сигнальный элемент наличия электрического тока в определённой цепи. Бывает различных цветов свечения

Специальный полупроводниковый диод, при освещении которого на выводах появляется слабый электрический ток. Применяется для измерения освещенности, регистрации колебаний света и т.д., подобно фоторезистору
Полупроводниковый прибор, предназначенный для коммутации электрической цепи. При подаче небольшого положительного напряжения на управляющий электрод относительно катода, тиристор открывается и проводит ток в одном направлении (как диод). Закрывается тиристор только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока. Выводы анода, катода и управляющего электрода буквами на схеме не обозначаются
Составной тиристор, способный коммутировать токи как положительной полярности (от анода к катоду), так и отрицательной (от катода к аноду). Как и тиристор, симистор закрывается только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока
Вид тиристора, который открывается (начинает пропускать ток) только при достижении определённого напряжения между его анодом и катодом, и запирается (прекращает пропускать ток) только при уменьшении тока до нуля, или смены полярности тока. Используется в схемах импульсного управления
Биполярный транзистор, который управляется положительным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). При этом при повышении входного напряжения база-эмиттер от нуля до 0,5 вольта, транзистор находится в закрытом состоянии. После дальнейшего повышения напряжения от 0,5 до 0,8 вольта транзистор работает как усилительный прибор. На конечном участке «линейной характеристики» (около 0,8 вольта) транзистор насыщается (полностью открывается). Дальнейшее повышение напряжения на базе транзистора опасно, транзистор может выйти из строя (происходит резкий рост тока базы). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в n-p-n транзисторе – от коллектора к эмиттеру. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
Биполярный транзистор, который управляется отрицательным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в p-n-р транзисторе – от эмиттера к коллектору. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
Транзистор (как правило — n-p-n), сопротивление перехода «коллектор-эмиттер» которого уменьшается при его освещении. Чем выше освещённость, тем меньше сопротивление перехода. Применяется для измерения освещенности, регистрации колебаний света (световых импульсов) и т.д., подобно фоторезистору
Транзистор, сопротивление перехода «сток-исток» которого уменьшается при подаче напряжения на его затвор относительно истока. Обладает большим входным сопротивлением, что повышает чувствительность транзистора к малым входным токам. Имеет электроды: Затвор, Исток, Сток и Подложку (бывает не всегда). По принципу работы, можно сравнить с водопроводным краном. Чем больше напряжение на затворе (на больший угол повёрнута рукоятка вентиля), тем больший ток (больше воды) течёт между истоком и стоком. По сравнению с биполярным транзистором имеет больший диапазон регулирующего напряжения – от нуля, до десятков вольт. Выводы затвора, истока, стока и подложки буквами на схеме не обозначаются
Полевой транзистор, управляемый положительным потенциалом на затворе, относительно истока. Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Полевой транзистор, управляемый отрицательным потенциалом на затворе, относительно истока (для запоминания р-канал — позитив). Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Полевой транзистор, обладающий теми же свойствами, что и «со встроенным n-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком. По технологии изолированного затвора исполняются MOSFET транзисторы, управляемые входным напряжением от 3 до 12 вольт (в зависимости от типа), имеющие сопротивление открытого перехода сток-исток от 0,1 до 0,001 Ом (в зависимости от типа)
Полевой транзистор, обладающий теми же свойствами, что и «со встроенным p-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R – это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод , стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».


Исходя из этого норматива, все схемы разделены на 8 типов:

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.
  9. Среди существующих 10 видов, указанных в данном документе, выделяют:

    1. Комбинированные.
    2. Деления.
    3. Энергетические.
    4. Оптические.
    5. Вакуумные.
    6. Кинематические.
    7. Газовые.
    8. Пневматические.
    9. Гидравлические.
    10. Электрические.

    Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

    Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

    В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

    «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

    После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

    Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах


Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

9 функциональных признаков УГО

УГО Наименование
Дугогашение
Без самовозврата
С самовозвратом
Концевой или путевой выключатель
С автоматическим срабатыванием
Выключатель-разъединитель
Разъединитель
Выключатель
Контактор

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГО Наименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
  • Штырь
  • Гнездо
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

Наименование Обозначение
Выключатель автоматический в силовой цепи QF
Выключатель автоматический в управляющей цепи SF
Выключатель автоматический с дифференциальной защитой или дифавтомат QFD
Рубильник или выключатель нагрузки QS
УЗО (устройство защитного отключения) QSD
Контактор KM
Реле тепловое F, KK
Временное реле KT
Реле напряжения KV
Импульсное реле KI
Фотореле KL
ОПН, разрядник FV
Предохранитель плавкий FU
Трансформатор напряжения TV
Трансформатор тока TA
Частотный преобразователь UZ
Амперметр PA
Ваттметр PW
Частотомер PF
Вольтметр PV
Счетчик энергии активной PI
Счетчик энергии реактивной PK
Элемент нагревания EK
Фотоэлемент BL
Осветительная лампа EL
Лампочка или прибор индикации световой HL
Разъем штепсельный или розетка XS
Переключатель или выключатель в управляющих цепях SA
Кнопочный выключатель в управляющих цепях SB
Клеммы XT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.